中文多分类 BERT】的更多相关文章

直接把自己的工作文档导入的,由于是在外企工作,所以都是英文写的 Steps: git clone https://github.com/google-research/bert prepare data, download pre-trained models modify code in run_classifier.py add a new processor add the processor in main function Train and predict train python…
bert模型在tensorflow1.x版本时,也是先发布的命令行版本,随后又发布了bert-tensorflow包,本质上就是把相关bert实现封装起来了. tensorflow2.0刚刚在2019年10月左右发布,谷歌也在积极地将之前基于tf1.0的bert实现迁移到2.0上,但近期看还没有完全迁移完成,所以目前还没有基于tf2.0的bert安装包面世,因为近期想基于现有发布的模型做一个中文多分类的事情,所以干脆就弄了个基于命令行版本的.过程中有一些坑,随之记录下来. 1. colab:因为…
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用CNN对中文文本进行分类. 数据处理还是没有变,只是换了个模型,代码如下: # coding: utf-8 from __future__ import print_function import os import sys import time from datetime import time…
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:http://tensorflow123.com/ 这个项目是基于以下项目改写: cnn-text-classification-tf 主要的改动: 兼容 tensorflow 1.2 以上 增加了中文数据集 增加了中文处理流程 特性: 兼容最新 TensorFlow 中文数据集 基于 jieba 的中…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词后的train_jieba.txt和test_jieba.txt,看一下部分内容: fenci_path = '/content/drive/My Drive/NLP/dataset/Fudan/train_jieba.txt' with open(fenci_path,'r',encoding='…
摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文文本分类万字总结(CNN.TextCNN.BiLSTM.注意力)>,作者: eastmount. 一.文本分类概述 文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类.文本分类最早可以追溯到上世纪50年代,那时主要通过专家定义规则来进行文本分类:80年代出现了利…
深度学习近一段时间以来在图像处理和NLP任务上都取得了不俗的成绩.通常,图像处理的任务是借助CNN来完成的,其特有的卷积.池化结构能够提取图像中各种不同程度的纹理.结构,并最终结合全连接网络实现信息的汇总和输出.RNN由于其记忆功能为处理NLP中的上下文提供了途径. 在短文本分析任务中,由于句子句长长度有限.结构紧凑.能够独立表达意思,使得CNN在处理这一类问题上成为可能.论文Convolutional Neural Networks for Sentence Classification(论文…
1.安装hugging face的transformers pip install transformers 2.下载相关文件 字表: wget http://52.216.242.246/models.huggingface.co/bert/bert-base-uncased-vocab.txt 配置文件: wget http://52.216.242.246/models.huggingface.co/bert/bert-base-uncased-config.json 模型文件: wget…
详细使用说明:http://textgrocery.readthedocs.io/zh/latest/index.html TextGrocery是一个基于LibLinear和结巴分词的短文本分类工具,特点是高效易用,同时支持中文和英文语料. GitHub项目链接 需要安装: pip install classifier 过程: >>> from tgrocery import Grocery # 新开张一个杂货铺(别忘了取名) >>> grocery = Grocer…
PHP+MYSQL做网站开发通常都会碰到浏览器输出中文字符时乱码,这个问题的原因主要是因为HTML内容编码,PHP文件编码和MySQL数据库编码这三者不一致造成的.下面我们以UTF-8为例简述一下如何统一这三者之间的关系. 新增一个PHP文件,命名为test_charset.php,将下面的代码保存到该文件中: <?php $charset = "utf8"; $con = mysql_connect("localhost", "root"…
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题.在Eclipse可以从几个层面设置编码格式:Workspace.Project.Content Type.File  本文以Eclipse 3.3(英文)为例加以说明: 1. 设置Workspace的编码格式:  Windows->Preferences... 打开"首选项"窗口,点击左侧导航树到General->…
RNN模型由于具有短期记忆功能,因此天然就比较适合处理自然语言等序列问题,尤其是引入门控机制后,能够解决长期依赖问题,捕获输入样本之间的长距离联系.本文的模型是堆叠两层的LSTM和GRU模型,模型的结构为:LSTM(GRU)—dropout—LSTM(GRU)—dropout—全连接层—输出层,比较简单.关于TensorFlow搭建RNN模型有关的内容,在这篇<TensorFlow之RNN:堆叠RNN.LSTM.GRU及双向LSTM>博客里阐述得比较清楚了,这里不赘述. 尽管RNN模型天然比较…
文本分类是自然语言处理中一个非常经典的任务,可用的模型非常多,相关的开源代码也非常多了.这篇博客用一个CNN模型,对新闻文本进行分类. 全部代码有4个模块:1.数据处理模块(命名为:cnews_loader.py) :2.模型搭建模块(命名为cnn_model.py):3.模型运行模块(命名为run_cnn.py):4.模型预测模块(命名为predict.py). GitHub地址:https://github.com/DengYangyong/Chinese_Text_Classificati…
1.对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为例: 每一篇都对应着一个txt文件,编码格式是gb18030.utf8文件夹下的是utf-8编码格式的txt文件. 其中C3-Art0001.txt的部分内容如下: 2.数据预处理 (1)将文本路径存储到相应的txt文件中 我们要使用数据,必须得获得文本以及其对应的标签,为了方便我们进行处理,首先将…
目录 1. 条款与条件 2. 功能 3. 元数据.评级与排名 4. 位置 5. 推送通知 6. 游戏中心 7. 广告 8. 商标与商业外观 9. 媒体内容 10. 用户界面 11. 购买与货币 12. 抓取与聚合 13. 设备损害 14. 人身攻击 15. 暴力 16. 令人反感的 17. 隐私 18. 色情 19. 宗教.文化与种族 20. 竞赛.赌金.抽奖以及奖券 21. 慈善与援助 22. 法律要件 1. 条款和条件 1.1 为App Store开发程序,开发者必须遵守程序许可协议(PLA…
1. 输入文本预处理, 通过jieba分词, 空格" "拼接文本串.  每行一个样本, 最后一个单词为双下划线表明label,  __label__'xxx' . eg: 邱县 继刚 家庭 农场 小麦 . 玉米 . 棉花 . 大豆 . 蔬菜 . 苗木 种植 . 销售 ( 依法 须 经 批准 的 项目 , 经 相关 部门 批准 后方 可 开展 经营 活动 ) __label__A 江苏 嘉利欣 农业 科技 有限公司 农业 科技 研发 . 转让 . 咨询服务 展览 展示 服务 现代农业 休…
1.map做一个标签的数字替换 2.vec = CountVectorizer(lowercase=False, max_features=4000)  # 从sklean.extract_feature.text 导入,根据词频做一个数字的映射,max_feature表示的是最大的特征数 需要先使用vec.fit ,再使用vec.transform 才有效 3. vec = TfidfVectorizer(lowercase=False, max_features=4000)  # 从skle…
1.安装package control 使用control+~打开终端,然后输入以下内容并确定: import  urllib.request,os;pf='Package Control.sublime-package';ipp=sublime.installed_packages_path();urllib.request.install_opener(urllib.request.build_opener(urllib.request.ProxyHandler()));open(os.pa…
详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac…
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践. 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 BERT 全称为 Bidirectional Encoder Representations from Transformer,是谷歌在 2018 年 10 月发布的语言表示模型.BERT 通过维基百科和书籍语料组成的庞…
代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification 往期精彩: 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 利用CNN进行中文文本分类(数据集是复旦中文语料) 利用transformer进行中文文本分类(数据集是复旦中文语料) 基于tensorflow的中文文本分类 数据集:复旦中文语料,包含20类数据集下载地址:h…
基于Bert从Windows API序列做恶意软件的多分类 目录 基于Bert从Windows API序列做恶意软件的多分类 0x00 数据集 0x01 BERT BERT的模型加载 从文本到ids 从ids到词嵌入.分类 是否需要训练bert的参数? 0x02 数据预处理 0x03 模型框架和代码 0x00 数据集 https://github.com/ocatak/malware_api_class 偶然间发现,该数据集共有8种恶意软件家族,数量情况如下表. Malware Family S…
  BERT是谷歌公司于2018年11月发布的一款新模型,它一种预训练语言表示的方法,在大量文本语料(维基百科)上训练了一个通用的"语言理解"模型,然后用这个模型去执行想做的NLP任务.一经公布,它便引爆了整个NLP界,其在11个主流NLP任务中都取得优异的结果,因此成为NLP领域最吸引人的一个模型.简单来说,BERT就是在训练了大量的文本语料(无监督)之后,能够在对英语中的单词(或中文的汉字)给出一个向量表示,使得该单词(或汉字)具有一定的语义表示能力,因此,BERT具有一定的先验知…
目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在18年末时,NLP各大公众号.新闻媒体都被BERT(<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>)刷屏了,刷新了自然语言处理11项纪录,也被称为了2018年最强自然语言处理模型.…
cocos2dx 中文显示 分类: cocos2dx 2014-01-18 10:31 253人阅读 评论(0) 收藏 举报 目录(?)[+] 总结一句话,就是UTF-8编码. 1. 中文FNT字体文件制作 使用Bitmap Font Generator制作字体文件 选择Opotion->FontSetting,来设定需要导出的字体,主要注意选择Unicode编码,其他的size就是设置字体大小,height设置100%就行了. 导出设置,padding其实就是字的边缘留多大的空间,主要是考虑后…
中文文本分类不像英文文本分类一样只需要将单词一个个分开就可以了,中文文本分类需要将文字组成的词语分出来构成一个个向量.所以,需要分词. 这里使用网上流行的开源分词工具结巴分词(jieba),它可以有效的将句子里的词语一个个的提取出来,关于结巴分词的原理此处不再赘述,关键是他的使用方法.1.安装 结巴分词是一个Python的工具函数库,在python环境下安装,安装方式如下: (1)python2.x下 全自动安装 :easy_install jieba 或者 pip install jieba…
中文乱码分类: (1)按照请求分类: GET请求乱码 POST请求乱码 (2)按照乱码位置分类 从前台传到后台的数据乱码(存储到数据库中的数据乱码) 从后台传到前台的数据乱码(显示在页面的数据乱码) 乱码的解决方式: (1)GET请求中请求参数乱码(注意:GET请求乱码,Spring的配置以及编码拦截器的配置是无效的) 方法一: 在后台处理编码,通过getBytes方法转换编码方式 String username = request.getParameter("username");…
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取.模型的学习.而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤.虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的.对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直…