除了部署在Mesos之上, Spark也支持独立部署模式,包括一个Spark master进程和多个 Spark worker进程.独立部署模式可以运行在单机上作为测试之用,也可以部署在集群上.如果你打算部署在集群上,可以使用我们提供的部署脚本启动一个集群. 现在开始吧 使用sbt package对进行编译,可以参考开始指南.如果打算部署单独模式,就不需要安装Mesos. 手动方式启动集群 通过如下命令启动单独模式的master服务: ./runspark.deploy.master.Maste…
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initializing Spark) 3.1 使用Spark Shell(Using the Shell) 4 弹性分布式数据集(RDDs) 4.1 并行集合(Parallelized Collections) 4.2 外部数据库(Externa…
Spark版本:1.6.2 spark-submit提供了在所有集群平台提交应用的统一接口,你不需要因为平台的迁移改变配置.Spark支持三种集群:Standalone.Apache Mesos和Hadoop Yarn. 绑定应用程序依赖库 如果你的应用程序依赖其他项目,需要将其一起打包,打包时需要包括依赖的第三方库.sbt和maven都有装配插件,可以指定hadoop和spark版本,而不将其打入jar包中,因为hadoop和spark的库由集群环境提供.然后通过spark安装目录下的spar…
Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件.可以通过阅读应用提交文档了解如何在集群中提交应用. 组件 spark应用程序通过主程序的SparkContext对象进行协调,在集群上通过一系列独立的处理流程运行.为了便于迁移,SparkContext可以支持多种类型的集群管理器(spark standalone.Yarn.Mesos).当与集群管理器创建连接后,spark在集群的节点上面申请executors,用于处理应用程序中的计算任…
本文翻自官方博客,略有添加:https://github.com/mesos/spark/wiki/Spark-Programming-Guide Spark发指南 从高的面看,其实每一个Spark的用,都是一个Driver类,通运行用户定义的main函,在集群上行各种并发操作和算 Spark提供的最主要的抽象,是一个性分布式据集(RDD),它是一种特殊集合,可以分布在集群的点上,以函式程操作集合的方式,行各种各样的并发操作.它可以由hdfs上的一个文件建而,或者是Driver程序中,从一个已经…
本文转自:http://ifeve.com/spark-mesos-spark/ 在Mesos上运行Spark Spark可以在由Apache Mesos 管理的硬件集群中运行. 在Mesos集群中使用Spark的主要优势有: 可以在Spark以及其他框架(frameworks)之间动态划分资源. 可以同时部署多个Spark实例,且各个实例间的资源分配可以调整. 工作原理 在独立部署的Spark集群中,下图里的Cluster Manager代表Spark master.然而,在Mesos集群中,…
转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initializing Spark) 3.1 使用Spark Shell(Using the Shell) 4 弹性分布式数据集(RDDs) 4.1 并行集合(Parallelized Collections) 4.2 外部数据库(External Datasets) 4.3 RDD操作(RDD Opera…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
Spark可以通过三种方式配置系统: 通过SparkConf对象, 或者Java系统属性配置Spark的应用参数 通过每个节点上的conf/spark-env.sh脚本为每台机器配置环境变量 通过log4j.properties配置日志属性 Spark属性 Spark属性可以为每个应用分别进行配置,这些属性可以直接通过SparkConf设定,也可以通过set方法设定相关属性. 下面展示了在本地机使用两个线程并发执行的配置代码: val conf = new SparkConf() .setMas…
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化原语和高层的管道API. MLllib目前分为两个代码包: spark.mllib 包含基于RDD的原始算法API. spark.ml 则提供了基于DataFrames 高层次的API,可以用来构建机器学习管道. 我们推荐您使用spark.ml,…