LDA(主题模型算法)】的更多相关文章

多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,…
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利克雷分布LDA] Spark实现LDA的GraphX基础 在Spark 1.3中,MLlib现在支持最成功的主题模型之一,隐含狄利克雷分布(LDA).LDA也是基于GraphX上构建的第一个MLlib算法,GraphX是实现它最自然的方式. 有许多算法可以训练一个LDA模型.我们选择EM算法,因为它…
1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇文档,生成时,首先根据一定的概率选择一个主题,然后在根据概率选择主题里面的一个单词,这样反复进行,就可以生成一篇文档:反过来,LDA又是一种非监督机器学习技术,可以识别出大规模文档集或语料库中的主题. LDA原始论文给出了一个很简单的例子.Arts.Budgets.Children.Educatio…
在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn,  还有spark MLlib和gensim库也有LDA主题模型的类库,使用的原理基本类似,本文关注于scikit-learn中LDA主题模型的使用. 1. scikit-learn LDA主题模型概述 在scikit-learn中,LDA主题模型的类在sklearn.decomposition.LatentDirichletAllocatio…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数…
1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Allocation).本文的LDA仅指代Latent Dirichlet Allocation. LDA 在主题模型中占有非常重要的地位,常用来文本分类. LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.在贝叶斯学派中有: 先验分布 + 数据(似然)…
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 Dirichlet 分布 1 Dirichlet 分布 2 Dirichlet-Multinomial 共轭 主题模型LDA 1 各个基础模型 11 Unigram model 12 Mixture of unigrams model 2 PLSA模型 21 pLSA模型下生成文档 21 根据文档反…
目录 概况 为什么需要 LDA是什么 LDA的应用 gensim应用 数学原理 预备知识 抽取模型 样本生成 代码编写 本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA的文章网上已经有很多了,大多都是从经典的<LDA 数学八卦>中引出来的,原创性不太多. 本文将用尽量少的公式,跳过不需要的证明,将最核心需要学习的部分与大家分享,展示出直观的理解和基本的数学思想,避免数学八卦中过于详细的推导.最后用python 进行实现. 概况 第一部分,包括以下四部分. 为什么…
通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是由于这篇文档的前序铺垫太长(如今才意识到这些"铺垫"都是深刻理解LDA 的基础,但假设没有人帮助刚開始学习的人提纲挈领.把握主次.理清思路,则非常easy陷入LDA的细枝末节之中),还是由于当中的数学推导细节太多,导致一直没有完整看完过. 2013年12月,在我组织的Mac…
何谓“主题”呢?望文生义就知道是什么意思了,就是诸如一篇文章.一段话.一个句子所表达的中心思想.不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认为一篇文章.一段话.一个句子是从一个概率模型中生成的. D. M. Blei在2003年(准确地说应该是2002年)提出的LDA(Latent Dirichlet Allocation)模型(翻译成中文就是——潜在狄利克雷分配模型)让主题模型火了起来, 今年3月份我居然还发现了一个专门的LDA的R软件包(7月份有更新),可见主题模…
LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许多文本分类问题,但无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.LDA模型通过增加“主题”的方式,一定程度的解决上述问题: 一个词可能被映射到多个主题中,即,一词多义.多个词可能被映射到某个…
在LDA主题模型之后,需要对模型的好坏进行评估,以此依据,判断改进的参数或者算法的建模能力. Blei先生在论文<Latent Dirichlet Allocation>实验中用的是Perplexity值作为评判标准. 一.Perplexity定义 源于wiki:http://en.wikipedia.org/wiki/Perplexity perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比…
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open…
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments…
函数说明 1.LDA(n_topics, max_iters, random_state)  用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子 2. LDA.components_ 打印输入特征的权重参数, LDA主题模型:可以用于做分类,好比如果是两个主题的话,那就相当于是分成了两类,同时我们也可以找出根据主题词的权重值,来找出一些主题的关键词 使用sklearn导入库…
1.dictionary = gensim.corpora.Dictionary(clean_content)  对输入的列表做一个数字映射字典, 2. corpus = [dictionary,doc2vec(cl_content) for cl_content in clean_content]  # 输出clean_content每一个元素根据dictionary做数字映射后的结果 3.lda = gensim.model.ldamodel.LdaModel(corpus=corpus,…
将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样本. PCA主要将的是主成分-变量之间的关系,在文本中LDA也有同样的效果,将一撮词(变量)变成话题(主成分),同时通过画像主成分,可以知道人群喜欢什么样子的话题: Q型聚类代表样本之间的群落关系. LDA假设前提:主题模型中最主要的假设是词袋假设(bag of words),指通过交换文档内词的次…
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 举个例子,有两个句子分别如下: "乔布斯离我们而去了." "苹果价格会不会降?" 可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,…
上个月参加了在北京举办SIGKDD国际会议,在个性化推荐.社交网络.广告预测等各个领域的workshop上都提到LDA模型,感觉这个模型的应用挺广泛的,会后抽时间了解了一下LDA,做一下总结: (一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 举个例子,有两个句子分别如下: “乔布斯离我们而去了.” “苹果价格会不会降?” 可以看到上面这两个…
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA…
def genlda(textlist,n): ticks = str(time.time()).replace('.','')[-6:-1] nn=str(n) dictionary = corpora.Dictionary(textlist) corpus = [ dictionary.doc2bow(text) for text in textlist ] #tfidf = models.TfidfModel(corpus) #corpus_tfidf = tfidf[corpus] #p…
import codecs #主题模型 from gensim import corpora from gensim.models import LdaModel from gensim import models from gensim.corpora import Dictionary te = [] fp = codecs.open('input.txt','r') for line in fp: line = line.split(',') te.append([ w for w in…
一.简介 https://cloud.tencent.com/developer/article/1058777 1.LDA是一种主题模型 作用:可以将每篇文档的主题以概率分布的形式给出[给定一篇文档,推测其主题分布].我们的目标是找到每一篇文档的主题分布和每一个主题中词的分布. 从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类. 2.同时,它是一种典型的词袋模型 即一篇文档是由一组词构成,词与词之间没有先后顺序的关系. 此外,一篇文档可以包含多个…
转载请注明出处: http://www.cnblogs.com/gufeiyang 随着互联网的发展,文本分析越来越受到重视.由于文本格式的复杂性,人们往往很难直接利用文本进行分析.因此一些将文本数值化的方法就出现了.LDA就是其中一种很NB的方法. LDA有着很完美的理论支撑,而且有着维度小等一系列优点.本文对LDA算法进行介绍,欢迎批评指正. 本文目录: 1.Gamma函数 2.Dirichlet分布 3.LDA文本建模 4.吉普斯抽样概率公式推导 5.使用LDA 1.Gamma函数 T(x…
LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC) LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词): 对每个D中的文档d…
原文 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC) LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词): 对每个D中的…
1.说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Latent Dirichlet Allocation>中介绍的LDA模型.用变分EM算法求解參数. 为了使代码在vs2013中执行.做了一些微小修改,但不影响原代码的逻辑. vs2013project可在我的资源中下载: http://download.csdn.net/detail/happyer88/8…
对于LDA模型,最常用的两个评价方法困惑度(Perplexity).相似度(Corre). 其中困惑度可以理解为对于一篇文章d,所训练出来的模型对文档d属于哪个主题有多不确定,这个不确定成都就是困惑度.困惑度越低,说明聚类的效果越好. 计算公式     分母是测试集中所有单词之和,即测试集的总长度,不用排重.其中p(w)指的是测试集中每个单词出现的概率,计算公式如下.p(z|d)表示的是一个文档中每个主题出现的概率,就是程序中的.theta文件,p(w|z)表示的是词典中的每一个单词在某个主题下…
在之前的博客中已经详细介绍了如何用Gibbs做LDA抽样.(http://www.cnblogs.com/nlp-yekai/p/3711384.html) 这里,我们讨论一下实验结果: 结果文件包括: model-final.twords model-final.others model-final.phi model-final.tassign model-final.theta wordmap.txt ok,我们逐一看各个文件的含义: 1.wordmap.txt最简单,即训练文本的词频统计…
如今来推导一下得到变分參数更新式的过程.这一部分是在论文的附录中,为避免陷入过多细节而影响总体理解.能够在刚開始学习LDA的时候先不关注求解细节.首先要把L写成关于γ,ϕ\gamma,\phi函数.依据之前我们对L的定义: L(γ,ϕ;α,β)=Eq[logp(θ,z,w|α,β)]−Eq[logq(θ,z)] L(\gamma,\phi;\alpha,\beta)=E_q[logp(\theta,\mathbf z,\mathbf w|\alpha,\beta)]-E_q[logq(\thet…