Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这个 D1F 比某道 jxd 作业里的 D1F 质量高多了啊,为啥这场的 D 进了 jxd 作业而这道题没进/yun 首先这题肯定有个结论对吧,那么我们就先尝试猜一下什么样的排列符合条件,也就是先考虑这题 \(a_i\)​​ 全是 \(-1\)​​ 的情况怎么做,那么通过观察可以发现,由于判定两个数是否互质的过程中只需要考虑它们的质因子集合即可,因此可以发现如果两个数包含的质因子集合完全相同,那么它们显然是可以互换的,因此假设第…
Codeforces 题面传送门 & 洛谷题面传送门 智商掉线/ll 本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题. Conclusion. 在最优方案中,至多只有一个数组只有部分被选,其余数组要么全选要么全都不选. 证明:考虑调整.假设存在两个数组 \(x,y\) 分别选了前 \(p,q\) 个元素,这里不妨假设 \(a_{x,p+1}\ge a_{y,q+1}\),那么考虑从 \(y\) 数组中拎 \(l=\min(len_x-p,q)…
[Codeforces 1208D]Restore Permutation (树状数组) 题面 有一个长度为n的排列a.对于每个元素i,\(s_i\)表示\(\sum_{j=1,a_j<a_i}^i a_j\).即前面比它小的元素的值之和. 给出\(s_1,s_2 \dots s_n\),求a 分析 考虑如何求\(a_n\),\(s_n\)实际上表示的是1~n中比\(a_n\)小的所有数的和,可以直接求出\(a_n\) 然后我们可以倒序求\(a_i\),求到\(a_i\)的时候,我们已经知道\(…
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我们可以很自然地将排列拆成一个个置换环,即我们建一张图 \(G\),对于 \(i\in[1,n]\) 连边 \(i\to p_i\),那么题目的要求就可以转化为:对于每个点 \(i\),它置换环上下一步或者下下步为 \(a_i\). 做出这个简单的转化后,就可以发现一个非常 trivial 的性质: Obse…
Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_{a+id}\),因此考虑斐波那契数列组合恒等式 \(F_{m+n+1}=F_mF_{n}+F_{m+1}F_{n+1}\),具体证明戳这里,这里就不再赘述了. 注意到此题还涉及后 \(18\) 位,也就是要将斐波那契数列的各种运算放到模 \(10^{18}\) 意义下进行,因此我们可以考虑找一下斐波那契数…
Codeforces 题目传送门 & 洛谷题目传送门 其实是一道还算一般的题罢--大概是最近刷长链剖分,被某道长链剖分与直径结合的题爆踩之后就点开了这题. 本题的难点就在于看出一个性质:最长路径的其中一个端点一定是直径的某一个端点. 证明:首先我们找出原树的一个直径,如果直径上标记边的个数为偶数那显然这条直径就是最优解,符合题意,否则我们假设我们找出的直径为 \(AB\),我们已经找出了一条符合要求的路径 \(CD\),下证我们总可以通过调整 \(CD\) 的端点,找出一条以 \(A\) 或 \…
Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我们总可以将其调整到叶子节点并使答案不会更劣,并且如果非必须(\(2y\le\) 树中叶子节点的个数),我们选择的这 \(y\) 个路径的 \(2y\) 个端点一定两两不相同,否则我们还是可以调整重复的叶子节点的位置使答案不变劣. 其次我们还可以发现,对于固定的 \(2y\) 个叶子节点,我们总存在一种选法使…
Codeforces 题面传送门 & 洛谷题面传送门 咦,题解搬运人竟是我? 一道很毒的计数题. 先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的出现次数 \(-1\).我们假设第 \(i\) 种颜色被操作了 \(c_i\) 次,那么一组 \(\{c_1,c_2,\cdots,c_k\}\) 符合条件当且仅当 \(\forall i,a_i+kc_i\ge\sum\limits_{i=1}^kc_i\).我们所求即是符合这样的条件的 \(\{a_i-…
Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进行初步转化.显然对于 \(s_i=s_j,t_i=t_j\)​ 的 \((i,j)\)​,我们肯定会将它们放在一起操作,这启发我们将所有 \((s_i,t_i)\)​ 看作一个二元组,那么如果我们把"每一步将字符 \(x\) 变为 \(y\)"这样的操作视作一条从 \(x\) 连向 \(y…
Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样的题我们肯定要考虑一个图邻接矩阵的秩是什么.显然根据我们幼儿园就学过的线性代数,对于一个矩阵 \(A\)​ 而言,其行列式就是其最大的子式满足其行列式不等于 \(0\),也就是任取若干行 & 若干列,它们的交组成的矩阵行列式不等于 \(0\),不难发现对于一个森林的邻接矩阵而言,对于任意一个子式,如果…
Codeforces 题目传送门 & 洛谷题目传送门 还是做题做太少了啊--碰到这种题一点感觉都没有-- 首先我们来证明一件事情,那就是存在一种合并方式 \(\Leftrightarrow\) \(\exist b_i\in\mathbb{Z}^+,\sum\limits_{i=1}^na_ik^{-b_i}=1\) 考虑充分性,倘若我们已经知道了 \(b_1,b_2,\dots,b_n\) 的值怎样构造合并的序列,考虑 \(B=\max\limits_{i=1}^nb_i\),这里有一个结论,…
Codeforces 题目传送门 & 洛谷题目传送门 *2800 的 DS,不过还是被我自己想出来了 u1s1 这个 D1C 比某些 D1D 不知道难到什么地方去了 首先碰到这类问题我们肯定考虑枚举什么东西,然后在枚举过程中用个什么东西维护答案,求出其对答案的贡献.此题一个很直观的想法是枚举左端点,但很遗憾此题涉及 gcd,不太好直接维护.故我们换个想法,枚举答案. 我们先预处理出每个数的所有因子--这个显然可以在 \(n\ln n\) 的时间内求出.然后从大到小动态地枚举一个指针 \(i\).…
Codeforces 题目传送门 & 洛谷题目传送门 首先拿到这类题第一步肯定要分析题目给出的矩阵有什么性质.稍微打个表即可发现题目要求的矩形是一个分形.形式化地说,该矩形可以通过以下方式生成:\(A_n\) 为一个 \(2^n\times 2^n\) 的矩阵,\(A_0=[1]\),\(A_i=\begin{bmatrix}A_{i-1}&A'_{i-1}\\A'_{i-1}&A_{i-1}\end{bmatrix}\),其中 \(A'_{i}\) 也是一个 \(2^i\time…
题目链接: B. Kyoya and Permutation time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Let's define the permutation of length n as an array p = [p1, p2, ..., pn] consisting of n distinct integers…
D. Optimal Number Permutation time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output You have array a that contains all integers from 1 to n twice. You can arbitrary permute any numbers in a. Let…
现场 1 小时 44 分钟过掉此题,祭之 大力分类讨论. 如果 \(|s|=1\),那么显然所有位置都只能填上这个字符,因为你只能这么填. scanf("%d",&n);mmp['+']=0;mmp['-']=1;mmp['*']=2; for(int i=1;i<=n;i++) scanf("%d",&a[i]); char opt[4];scanf("%s",opt+1);int len=strlen(opt+1); i…
Codeforces 题面传送门 & 洛谷题面传送门 Yet another immortal D1+D2 I %%%%%% 首先直接统计肯定是非常不容易的,不过注意到这个 \(k\) 非常小,因此考虑对这个 \(k\) 做点文章.我们考虑每个数被执行了多少次 \(-1\) 操作,设第 \(i\) 个数被执行了 \(b_i\) 次 \(-1\) 操作,那么最终的结果就是 \((a_1-b_1)\oplus(a_2-b_2)\oplus\cdots\oplus(a_n-b_n)\).然后就是比较神…
反思 写一写可以发现上限不断更新 一直在想怎么判断NO,刻板拘泥于错误的模型,想要像往常一样贪心地.读入当前值就能判断会不会NO,实际上只要构造完以后,最后把所有操作重新跑一遍看会不会冲突即可判断NO #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 5005; int n, m…
Diverse Permutation Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Practice CodeForces 483C Description Permutationp is an ordered set of integers p1,   p2,   ...,   pn, consisting of n distinct positive i…
By now, you are given a secret signature consisting of character 'D' and 'I'. 'D' represents a decreasing relationship between two numbers, 'I' represents an increasing relationship between two numbers. And our secret signature was constructed by a s…
A. Co-prime Array time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output You are given an array of n elements, you must make it a co-prime array in as few moves as possible. In each move you can i…
You are given a sequence b1,b2,…,bnb1,b2,…,bn . Find the lexicographically minimal permutation a1,a2,…,a2na1,a2,…,a2n such that bi=min(a2i−1,a2i)bi=min(a2i−1,a2i) , or determine that it is impossible. Input Each test contains one or more test cases.…
题目链接:http://codeforces.com/problemset/problem/483/C 题目意思:给出 n 和 k,要求输出一个含有 n 个数的排列 p1, p2, ...,pn,使得 |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| 恰好有 k 个不同的数.注意,p1, p2, ..., pn 每个数是不相等的,而且不大于 n. 构造题,这个通过手动很容易知道答案.又献上我的恶心涂鸦---看完之后会发现其实很简单,好像比 B 还要简单. 只要红色…
这题可以根据l, r 在二进制下的长度进行分类. l  的长度小于 r 的时候,有两种可能,一种是r 在二进制下是 1* 这种样子,故答案取 r : 一种是取答案为  (1LL << (rcnt - 1)) - 1 ,意思为比 r 小一位长度,也是 1* 这种样子的数. l 的长度等于 r 的时候,答案从 l 开始找 , 按位 与 1,同时要满足答案不大于 r  即可. source code (有参考): //#pragma comment(linker, "/STACK:1677…
水题.放个1就可以了.暴力的找数字也是很快的. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<algorithm> using namespace std; +; long long a[maxn]; long long gcd(long long a,long long b) { ) return a; return gcd(b,a%b)…
Link:http://codeforces.com/contest/803/problem/F 题意:给n个数字,求有多少个GCD为1的子序列. 题解:容斥!比赛时能写出来真是炒鸡开森啊! num[i]: 有多少个数字是 i 的倍数. 所有元素都是1的倍数的序列有:$2^n-1$个.先把$2^n-1$设为答案 所有元素都是质数的倍数的序列有:$\sum 2^{num[p_1]} - 1$个,这些序列不存在的,得从答案中减去. 所有元素都是两质数之积的倍数的序列有:$\sum 2^{num[p_…
这题一场模拟赛我们出了弱化版(n<=1e6),抄题面给的程序能拿到71分的好成绩 其实后面的29分是加了几个1e9的数据卡人 这糟老头子真是坏得很 正解我们机房看了三天 在这里感谢这篇题解的作者,代码解释得很清晰~ 经过打表观察,可以发现:当\(1\le x \le k\)时 如果 \(k\) 为奇数,\(x*2^{y}\) \(mod\) \(k\)的值成环 如果 \(k\) 为偶数,质因数分解\(x\),如果所含因子\(2\)的次数大于\(k\)所含因子\(2\)的次数,那\(x*2^{y}…
Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #d…
题意: 以每个点为起点,找到第一个出现两次的点 解析: 我是先找出来所有的环  环上的点找出来的肯定是自己 bz[i]  = i; 然后去遍历不在环上的点j  如果通过这个点找到一个已经标记的的点i  那么bz[j] = bz[i]; 行吧...其实直接暴力 就几行代码...真是的...过分....我真是垃圾啊..啦啦啦...呸.. #include <bits/stdc++.h> using namespace std; , INF = 0x7fffffff; vector<int&g…
285C - Building Permutation 思路:贪心.因为每个数都不同且不超过n,而且长度也为n,所有排列只能为1 2 3 ......n.所以排好序后与对应元素的差值的绝对值加起来就是答案. 代码: #include<bits/stdc++.h> using namespace std; #define ll long long ; int a[N]; int main() { int n; cin>>n; ;i<=n;i++)cin>>a[i];…