Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问题 (2) 主要贡献 (3) 算法原理 (4) 实验结果 (5) 参考文献 在文献阅读的基础上加入了自己的理解,为文献阅读笔记,如有错误望不吝指出. (1) 解决问题 现存的HIN表征算法通常一个模型用到底,没有对不同关系进行区分,这不可避免地会影响网络表征的能力. (2) 主要贡献 Contrib…
论文题目:<LINE: Large-scale Information Network Embedding>发表时间:  KDD 2015论文作者:  Jian Tang, Meng Qu , Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei论文地址:  Download 前言 大规模信息网络 (large-scale information Network) 无论在存取性,使用性上比起普通的信息处理方式更加复杂,更加多变,例如航空公司网络,出版物网…
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Goo…
11 GloDyNE Global Topology Preserving Dynamic Network Embedding link:http://arxiv.org/abs/2008.01935 Abstract 目前大多数现有的DNE方法的思想是捕捉最受影响的节点(而不是所有节点)或周围的拓扑变化,并相应更新节点嵌入. 这种近似虽然可以提高效率,但由于没有考虑通过高阶近似传播和接收累积拓扑变化的非活跃子网络,因此不能有效地保持动态网络在每个时间步的全局拓扑. 为了应对这一挑战,我们提出了…
前言 主体思想:深度聚类需要考虑数据内在信息以及结构信息. 考虑自身信息采用 基础的 Autoencoder ,考虑结构信息采用 GCN. 1.介绍 在现实中,将结构信息集成到深度聚类中通常需要解决以下两个问题. 1.在深度聚类中应该考虑哪些结构性信息? 结构信息表明了数据样本之间潜在的相似性.不仅需要考虑低阶信息还需要考虑高阶信息. 2.结构信息与深度聚类之间的关系是什么? 深度聚类的基本组成部分是深度神经网络(DNN),例如  Autoencoder.Autoencoder  由多层结构组成…
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang论文来源:2020, ICLR论文地址:download 论文代码:download 1 Introduction 众多图嵌入方法关注于保存图结构或最小化重构损失,忽略了隐表示的嵌入分布形式,因此本文提出对…
Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横空出世,似乎一切东西都在被embedding,今天我们要关注的这个领域是Network Embedding,也就是基于一个Graph,将节点或者边投影到低维向量空间中,再用于后续的机器学习或者数据挖掘任务,对于复杂网络来说这是比较新的尝试,而且取得了一些效果. 本文大概梳理了最近几年流行的一些方法和…
网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网络表示学习相关资料 https://blog.csdn.net/u013527419/article/details/74853633 NE(Network Embedding)论文小览 https://blog.csdn.net/Dark_Scope/article/details/7427958…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: network representation learning. NE: network embedding. Contributed by Cunchao Tu and Yuan Yao. DeepWalk: Online Learning of Social Representations. …