[Uva10294]Arif in Dhaka】的更多相关文章

[Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个珠子,k种颜色,输出不同的项链和手镯的个数. 题解 先考虑旋转的置换: 假如旋转i颗珠子,那么显然产生的循环节个数为gcd(i,n),那么就可以做了. 考虑翻转的置换: 首先可以知道,如果先旋转再翻转,肯定可以找到某一种翻转的置换与之等价. 那么假如珠子的个数为奇数,可以得到(n/2)个长度为2的循…
题目链接:https://vjudge.net/problem/UVA-10294 题解: 白书P146~147. 为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元素? 证明: (gcd:最大公约数,lcm:最小公倍数) 将珠子从0到n-1标号,对于旋转i位的置换,在以0号为起点,长度为t的一个循环节中,元素标号为:0,i%n,(i*2)%n,…,(i*(t-1))%n 易知:(i*t)%n==0(循环大小为t,跳t次就回到初始点0),即 n*k == i*t…
UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手镯. 两个项链定义为相同,即它们只能通过旋转得到一样的项链. 求出有多少种本质不同的项链和手镯. \((1 \le n \le 50, 1 \le m \le 10)\) 题解 : (参考了一下这篇大佬博客) 大白书上的原题,一个裸的Polya定理(逃 Polya定理 : \[L=\frac{1}{…
题意 PDF 分析 用n颗宝石串成项链和手镯, 每颗宝石的颜色可以t种颜色中的一种,当A类项链经过旋转得B类项链时,A和B属于一类项链, 而手镯不仅可以旋转还可以翻转,当A类手镯经过翻转得得到B类手镯时A和B属于一类手镯,问这n颗宝石,t种颜色,可以串成多少种项链和手镯? 解法: 首先将n颗宝石按顺时针方向编号1,2,3,4,5,6......n 旋转,当顺时针旋转i颗宝石时, 可以得到一个置换,且这个置换的个数为 (n*i)/gcd(n,i)/i ;由对称性可知 每个循环的阶均相同,故共有gc…
扯回正题,此题需要知道的是置换群的概念,这点在刘汝佳的书中写的比较详细,此处不多做赘述.此处多说一句的是第二种手镯的情况.在下图中“左图顺时针转1个位置”和“右图顺时针旋转5个位置”是相同的,所以在最终结果处需要(ans1+ans2)/2. 可以看刘汝佳白书,来看,这道题,burnside引理和polya定理的经典应用. #include<cstdio> #include<cstring> #include<cmath> #include<iostream>…
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. 置换是什么呢?  置换的广义概念在不同语境下有不同的形式定义: 在集合论中,一个集合的置换是从该集合映至自身的双射:在有限集的情况,便与上述定义一致. 在组合数学中,置换一词的传统意义是一个有序序列,其中元素不重复,但可能有阙漏.例如1,2,4,3可以称为1,2,3,4,5,6的一个置换,但是其中…
Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用t种颜色染n颗珠子,求等价类的个数. 旋转置换群一共有n个置换,分别对应将项链整体逆时针旋转0个.1个.2个...珠子的置换. 对于第i个置换,第0个.i个.2i...个珠子构成一个循环,共有gcd(n, i)个循环,每个循环中有n / gcd(n, i)个珠子. 所以n个置换,每个置换的不动点有t…
Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t < 11\) Input The input file contains several lines of input. Each line contains two positive integers \(N (0 < N < 51)\) and \(t (0 < t < 1…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n),i为偏移距离. 翻转:当n为偶数时,对称轴过点时循环节为n/2+1有n/2个,不过点时循环节为n/2有n/2个. 使用polya定理进行计数即可. [代码] #include<cstdio> using namespace std; typedef long long LL; +; LL pow…
这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Polya定理: 等价类的个数等于所有的置换f的km(f)的平均数 先考虑旋转,一共有n种情况,旋转1颗珠子构成循环,2颗,3颗·····n颗,那么对于旋转i颗珠子有gcd(i,n)个循环,那么根据Polya定理  置换的不动点的个数为 a = sum(tgcd(i, n)); 为什么又gcd(i, n)个…