51Nod 1238 最小公倍数之和V3】的更多相关文章

51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ Ans=\sum_{g=1}g\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{n}{g}}ij\sum_{d|i,d|j}\mu(d)\\ =\sum_{g=1}g\sum_{d=1}^{\frac{n}{g}}d^2\mu(d)S^2(\frac{n}{dg})…
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int N = 4641590, U = 4641588, mo = 1e9+7, in…
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 1000000007; } 然后就是大力推公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) \] \[ =\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)} \] \[ =\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_…
题目传送门 分析: 现在我们需要求: \(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)\) \(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{i ~\cdot ~j}{gcd(i,j)}\) \(=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}i\cdot j \cdot [gcd(i,j)=1]\)…
题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)   ∑i=1n​∑j=1n​lcm(i,j) =∑i=1n∑j=1nijgcd(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)}=∑i=1n​∑j=1n​gcd(i,j)ij​ =∑i=1nd−1∑i=1n∑j=1nij[gcd(i,j)==d]=\sum_{i=1}^{n}d^{-1}\sum_{i=1}…
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)$$ 令 $$g(n)=n*\sum_{i=1}^{n}\frac{i}{(n,i)}$$ 那么 $$ans(n)=2*g(n)-\sum_{i=1}^{n}i$$ 枚举gcd,化简g(n). $$g(n)=n*\sum_{d|n}1/d\sum_{i=1}^{n}…
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… $$ANS=\sum_{i=1}^{n}\sum_{j=1}^{n} \frac{i*j}{gcd(i,j)}$$$$=\sum_{d=1}^{n} d*\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j=1}^{\left\lfloo…
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}{\frac{i*j}{gcd(i,j)}}$,$1\leq{n}\leq10^{10}$. 知识提要:小于等于n中与n互质的数总和为$\sum_{i=1}^{n}[(n,i)=1]i=\frac{\varphi(n)*n+[n…
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N<=10^{10}2<=N<=1010 题目分析 这道题题面跟[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格一样,然而数据范围加强到了101010^{10}1010,莫比乌斯反演不行了了,所以我们看看怎样玄学杜教筛 Ans=∑i=1n∑j=1n…
这是一道杜教筛的入(du)门(liu)题目... 题目大意 求 \[ \sum_{i=1}^n\sum_{j=1}^nlcm(i,j) \] 一看就是辣鸡反演一类的题目, 那就化式子呗.. \[ \sum_{i=1}^n\sum_{j=1}^nlcm(i,j) \\ =\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{gcd(i,j)} \\ =\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\frac{ij}k[gcd(i,j)=k] \\ =\sum…