李宏毅机器学习课程---2.Regression - Case Study 一.总结 一句话总结: 分类讨论可能是比较好的找最佳函数的方法:如果 有这样的因素存在的话 模型不够好,可能是因素没有找全 因素以及函数的复杂度,并不是越高越好,适合的才是最好的 1.AI训练师的工作是什么? 为机器挑选[合适的model 和 loss function],不同的model和loss function,来适合解决不同的问题 loss英 [lɒs]  美 [lɔs] n. 减少:亏损:失败:遗失n. (Lo…
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Gradient Descent:Stochastic Gradient Descent 特征缩放:Feature Scaling stochastic英 [stə'kæstɪk]  美 [sto'kæstɪk] adj. [数] 随机的:猜测的 1.如何调整 Learning Rates? 比如先大后小:…
李宏毅机器学习课程---3.Where does the error come from 一.总结 一句话总结:机器学习的模型中error的来源是什么 bias:比如打靶,你的瞄准点离准心的偏移 variance:比如打靶,你的实际打靶的位置 偏离你的瞄准点的距离:相当于方差 1.机器学习中为什么需要判断error的来源? 有的放矢,改进模型:因为你的模型出错,你肯定需要改进模型,知道错误来源后才方便改进模型 2.做多次实验,一次函数和多次函数的函数在图上如何分布? 多次函数在多次实验中分布的线…
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描述(Dataset Description) train.csv 该文件中是2014年每月前20天每小时的观察数据,每小时的数据是18个维度的(其中之一是PM2.5). test.csv 该文件中包含240组数据,每组数据是连续9个小时的所有观测数据(同样是18个维度). 请预测每组数据对应的第10…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 学习机器学习,先从demo侠做起吧,…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) ML Lecture 4:Classification:Probabilistic Generative Model 在这堂课中,老师主要根据宝可梦各属性值预测其类型为例说明分类问题,其训练数据为若干宝可梦的各属性值及其类型…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) 今天这篇文章的主要内容是第1-2课的笔记. ML Lecture 1: Regression - Demo 1.Machine Learning最主要有三个步骤:(1)选择a set of function,也就是选择一个合…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 1.人工智能.机器学习.深度学习的关…
[]To help you practice strategies for machine learning, the following exercise will present an in-depth scenario and ask how you would act. Consider airplane pilots who’s training involves time spent in flight simulators. These flight simulators acce…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 一.误差来自哪里?该如何处理这些误差…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 1.回归问题的应用 回归问题因为主要…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 李老师这一集仅用1分19秒时间,通过…
引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 很久都没有用高数及线性代数的知识,很多都生疏了,这节课有很多的数学公式及概念,建议先看一下简书上的这篇介绍梯度及梯度下降法的文章深入浅出--梯度下降法及其实现,真的是深入浅出,好评如潮. 这里需要知道的是: 什么是梯度? 为什么要用梯度下降法? 一.什么是梯度 梯度是微积分中一个很重要…
Week1 Bird recognition in the city of Peacetopia (case study)( 和平之城中的鸟类识别(案例研究)) 1.Problem Statement This example is adapted from a real production application, but with details disguised to protect confidentiality. (问题陈述:这个例子来源于实际项目,但是为了保护机密性,我们会对细节…
版权声明:小博主水平有限,希望大家多多指导.本文仅代表作者本人观点,转载请联系知乎原作者——BG大龍. 目录 1 什么是机器学习? 2 机器学习的3个步骤 3 李宏毅老师的机器学习课程 4 按“模型的不同学习理论”分,机器学习的模型可以分为有监督学习,半监督学习,无监督学习,迁移学习和强化学习. ——4.1[解读] 有监督学习(Supervised Learning) ————4.1.1 监督学习Supervised Learning-> 回归Regression ————4.1.2 监督学习S…
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候).所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考. 1. 内容概要 Introduction 什么是机器学习 监督学习 非监督学习 Linear R…
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep learning 的教程,虽然介绍的内容很浅,毕竟针对大部分初学者.不管学习到什么程度,能将课程跟一遍,或多或少会对知识体系的全貌有一个大致的理解.如果有时间的话,强烈建议跟完课程的同时完成各项作业.但值得注意的是,机器学习除了需要适当的数理基础之外,还是一门实践科学,只有通过不断的深入积累才能有更好…
一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X59列; (2)4000行数据对应着4000个角色,ID编号从1到4001; (3)59列数据中, 第一列为角色ID,最后一列为分类结果,即label(0.1两种),中间的57列为角色对应的57种属性值. 二.思路分析及实现 2.1 思路分析 这是一个典型的二分类问题,结合课上所学内容,决定采用Log…
一.作业说明 给定训练集train.csv,要求根据前9个小时的空气监测情况预测第10个小时的PM2.5含量. 训练集介绍: (1)CSV文件,包含台湾丰原地区240天的气象观测资料(取每个月前20天的数据做训练集,12月X20天=240天,每月后10天数据用于测试,对学生不可见); (2)每天的监测时间点为0时,1时......到23时,共24个时间节点; (3)每天的检测指标包括CO.NO.PM2.5.PM10等气体浓度,是否降雨.刮风等气象信息,共计18项. 用excel打开,繁体字会出现…
coursea机器学习课程作业 一 关于此课程 课程地址 图片来自网络 1.官网课程地址传送 2.如果访问官网速度较慢可以上 B站课程地址 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提高.当今机器学习技术已经非常普遍,您很可能在毫无察觉情况下每天使用几十次.许多研究者还认为机器学习是人工智能(AI)取得进展的最有效途径.在本课程中,您将学习最高效的机器学习技术,了解如何使…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  banking case1 http://ucanalytics.com/blogs/data-visualization-case-study-banking/ A…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 8:Why deep? 1.Shallow network VS Deep network 在比较浅层网络与深层网络时,要让“矮胖”的网络和“高瘦”的网络的参数数目相等,这样比较才公平,如下图所示 比较结果如…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 7: CNN 目录 一.CNN的引入 二.CNN的层次结构 三.CNN的小Demo加深对CNN的理解 四.CNN的特点 在学习本节课知识之前,先让我们来了解一下有关CNN的知识,让我们对CNN有一个大概的认知…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 6: Brief Introduction of Deep Learning 本节课主要围绕Deep Learing三步骤: (1)function set (2)goodness of function (…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) 今天这篇文章的主要内容是第3课的笔记 ML Lecture 3: Gradient Descent 1.要真正理解梯度下降算法的原理需要一定的数学功底.比如微积分.泰勒展开式等等......本文将从一个下山的场景开始,先提出…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程6 说明 在前面尾随者台大机器学习基石课程和机器学习技法课程的设置,对机器学习所涉及到的大部分的知识有了一个较为全面的了解,可是对于没有动手敲代码并加以使用的情况,基本上是不可能掌握好的.特别是我的学习进程是袭击式的,因此.会非常快忘掉.心中仅仅剩下一个主要的纲要,所以后面要通过解说更为具体的Andrew Ng教授的机器学习课程进行回想和总结,希望能够抓住它的来龙去脉. 所以总结的内容主要是推导的思路.仅仅要能够把握住思路,就能保持长久的记忆. 主要内容 朴素贝叶斯…
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep learning 的教程,虽然介绍的内容很浅,毕竟针对大部分初学者.不管学习到什么程度,能将课程跟一遍,或多或少会对知识体系的全貌有一个大致的理解.如果有时间的话,强烈建议跟完课程的同时完成各项作业.但值得注意的是,机器学习除了需要适当的数理基础之外,还是一门实践科学,只有通过不断的深入积累才能有更好…
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
一.项目说明 给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情.在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类).所以,本项目实质上是一个7分类问题. 数据集介绍: (1).CSV文件,大小为28710行X2305列: (2).在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709…