AI算法:1. 决策树】的更多相关文章

今天,我们介绍的机器学习算法叫决策树. 跟之前一样,介绍算法之前先举一个案例,然后看一下如何用算法去解决案例中的问题. 我把案例简述一下:某公司开发了一款游戏,并且得到了一些用户的数据.如下所示: 图上每个图形表示一个用户,横坐标是年龄,纵坐标是性别.红色表示该用户喜欢这款游戏,蓝色表示该用户不喜欢这款游戏.比如,右下角这个蓝色方框,代表的是一个五六十岁的女士.蓝色表示她不喜欢这款游戏.再比如,左上角的红色三角形,代表的是一个十来岁的男孩.红色表示他喜欢这款游戏. 现在有个新用户,用绿色所示.这…
本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games - A Springer Textbook 这个章节主要讨论了在游戏中经常用到的一些基础的人工智能算法.这些算法大部分都出现在一些人工智能和机器学习的入门书籍中.在讲解算法在游戏中的应用的时候,会以吃豆人(Ms Pac-Man)作为样例,讲解怎么用行为树算法,树搜索算法,监督学习算法,无监督学习算法…
AI算法工程师炼成之路 面试题: l  自我介绍/项目介绍 l  类别不均衡如何处理 l  数据标准化有哪些方法/正则化如何实现/onehot原理 l  为什么XGB比GBDT好 l  数据清洗的方法有哪些/数据清洗步骤 l  缺失值填充方式有哪些 l  变量筛选有哪些方法 l  信息增益的计算公式 l  样本量很少情况下如何建模 l  交叉检验的实现 l  决策树如何剪枝 l  WOE/IV值计算公式 l  分箱有哪些方法/分箱原理是什么 l  手推SVM:目标函数,计算逻辑,公式都写出来,平…
作为小学期程序设计训练大作业的一部分,也是自己之前思考过的一个问题,终于利用小学期完成了贪吃蛇AI的一次尝试,下作一总结. 背景介绍: 首先,我针对贪吃蛇AI这一关键词在百度和google上尽心了检索,大致获得了一下信息 1.A*寻路算法是人工智能中的一个经典算法,很多AI利用这个算法提高性能. 2.在alphaGo一战成名,人工智能家喻户晓之后,有一个贪吃蛇AI吃满全屏的GIF图已读在微博疯转. 3.这个GIF图早在2013年就已经出现了(其实比alphaGo早). 4.国内过于贪吃蛇AI(也…
前言: 算是"long long ago"的事了, 某著名互联网公司在我校举行了一次"lengend code"的比赛, 其中有一题就是"智能俄罗斯方块". 本着一向甘做分母, 闪耀分子的绿叶精神, 着着实实地打了一份酱油. 这次借学习H5的机会, 再来重温下俄罗斯方块的AI编写. 本系列的文章链接如下: 1). 需求分析和目标创新 2). 游戏的基本框架和实现 这些博文和代码基本是同步的, 并不确定需求是否会改变, 进度是否搁置, 但期翼自己能…
SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准.信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息. 2 ID3算法只能对描述属性为离散型属性的数据集构造决策树,其余两种算法对离散和连续都可以处理 2,C4.5算法实例介绍(参考网址:http://m.blog.csdn.net/article/details…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
前言 所谓构建决策树, 就是递归的对数据集参数进行“最优特征”的选择.然后按最优特征分类成各个子数据集,继续递归. 最优特征的选择:依次计算按照各个特征进行分类以后数据集的熵,各个子数据集的熵比较后,其中拥有最小的熵的数据集就是最优的分类结果,此次分类的特征就是最优特征. 熵的计算:熵计算的是数据集的纯净程度,数据集的熵的大小只和数据集中各数据样本的最终分类结果的分布有关.假设数据集中所有数据都是“同一种类”的数据,那么其熵就是0,表示是最纯净的数据. (所以最优特征的选择就变成了,先计算分类前…
https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法.这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断.在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree).相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树…
https://blog.csdn.net/weixin_42137700/article/details/81628028 首先,本文不是为了增加大家的焦虑感,而是站在一名学生的角度聊聊找AI算法岗位的那些事儿(不喜请喷). 熟悉Amusi的同学应该知道,Amusi 是一名十八线过气211院校的研二学生.因此有幸成为秋招大军的一员.原本想着秋招完,拿到不错的Offer,再来写篇文章来总结的,但随着指针在转,越发觉得写一篇相关文章很重要. 这里先申明一下,AI算法工程师范围很大,细分一下:深度学…