P5367 【模板】康托展开】的更多相关文章

P5367 [模板]康托展开 感觉这题难度大概在绿题到蓝题之间qwq 一.洛谷日报[yummy]浅谈康托展开 如我想知道321是{1,2,3}中第几个小的数可以这样考虑 : 第一位是3,当第一位的数小于3时,那排列数小于321 如 123. 213 ,小于3的数有1.2 .所以有2× 2!个.再看小于第二位2的:小于2的数只有一个就是1 ,所以有1× 1!=1 所以小于321的{1,2,3}排列数有2×2!+1×1!=5个.所以321是第6个小的数. 2 ×2!+1× 1!+0× 0!就是康托展…
题目链接 https://www.luogu.org/problem/P5367 什么是康托展开 百度百科上是这样说的:   “康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的.” 是不是讲得很精(meng)致(bi)呢? 我看了无数篇博客,终于明白了一点点. 其实,康托展开就是求一个全排列在所有全排列中字典序排名第几. 举个例子: 比如说n=3的一个全排列:2 1 3 它的排名是3. 我们列出所有的全…
题目大意:给定一个$n$的排列,求它在$n$的全排列中的名次 题解:康托展开,对于一个全排列,第$i$为有$n+1-i$种选择,用变进制数表示,这一位就是$n+1-i$进制.记排列中第$[1,i)$中比第$i$位小的数个数位$a$,变进制数中第$i$位的数为$i-a-1$.可以用树状数组维护 卡点:无 C++ Code: #include <cstdio> #include <iostream> #include <algorithm> #define maxn 100…
2021.08.05 P5357 康托展开模板(康托展开) P5367 [模板]康托展开 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.康托展开 算法学习笔记(56): 康托展开 - 知乎 (zhihu.com) 题意: 求 1∼N 的一个给定全排列在所有1∼N 全排列中的排名.结果对 998244353取模. 分析: 如题. 代码如下: 树状数组优化,时间复杂度O(nlogn) #include<cstdio> #include<algorithm>…
问题描述 LG5367 题解 康托展开公式: \[ans=1+(\sum_{i=1}^{n}{a_i})\times(n-i)!\] 用树状数组维护一下\(\sum\)里面的东西,前缀积维护后面的东西. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; template <typename Tp> void read(Tp &x){ x=0;char ch=1;int fh; while(ch!='…
目录 一.关于康托展开 1.什么是康托展开 2.康托展开实现原理 二.具体实施 1.模板 一.关于康托展开 1.什么是康托展开 求出给定一个由1n个整数组成的任意排列在1n的全排列中的位置. 解决这样问题的算法叫康托展开. 例如: \(n=4\),序列a={\(1,3,4,2\)},那么a在1~4中的全排列位置为第4个. 2.康托展开实现原理 要知道序列a排在第几位,我们就需要知道序列a之前有多少位. 我们按照上面的栗子计算: 1.比1小的数有0个,有\(0\times(4-1)!=0\)种排列…
康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一位:5 2 4 1 3,如果一个排列的第一位比 \(5\) 小(有 \(4\) 种情况) 则不管其后 \(4\) 位如何(有 \(4!\) 种情况),其字典序都更小 所以,至少有 \(4\times 4!\) 个排列字典序更小. 第二位:5 2 4 1 3,如果另一个排列的第一位就是 \(5\) ,…
codevs 1225 八数码难题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description Yours和zero在研究A*启发式算法.拿到一道经典的A*问题,但是他们不会做,请你帮他们.问题描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为1238047…
如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里:  简陋的博客    百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行(牛线),问FJ此时的行号是多少.之后,FJ会给牛一个行号,牛必须按照新行号排列成线. 行号是通过以字典序对行的所有排列进行编号来分配的.比如说:FJ有5头牛,让他们排为行号3,排列顺序为: 1:1 2 3 4 5 2:1 2 3 5 4 3:1 2 4 3 5 因此,牛将在牛线1 2 4 3 5中. 之后,…
链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= 10000,10000 < 8!,根据逆康托展开的原理可以发现,A[n] * (n-1)! + A[n-1] * (n-2)! + A[n-2] * (n-3)! + ...... + A[2] * 1! + A[1] * 0! ,在前 n - 8 项之前,Ai == 0,所以每次都是取剩余排列中第 0…