[源码解析] 分布式训练Megatron (1) --- 论文 & 基础 目录 [源码解析] 分布式训练Megatron (1) --- 论文 & 基础 0x00 摘要 0x01 Introduction 1.1 问题 1.2 数据并行 1.3 模型并行 1.3.1 通信 1.3.2 张量并行 1.3.3 流水线并行 1.4 技术组合 1.5 指导原则 0x02 张量模型并行(Tensor Model Parallelism) 2.1 原理 2.1.1 行并行(Row Parallelis…
Task 的实现在 Celery 中你会发现有两处,一处位于 celery/app/task.py,这是第一个:第二个位于 celery/task/base.py 中,这是第二个.他们之间是有关系的,你可以认为第一个是对外暴露的接口,而第二个是具体的实现!所以,我们由简入繁,先来看看对外的接口: 其实这就是个我们声明 Task 的对象,例如我们使用这么一段代码:  我们可以看看 add 对象是啥: In [1]: add Out[1]: <@task: worker.add of tasks:…
Mybatis源码解析(三) -- Mapper代理类的生成   在本系列第一篇文章已经讲述过在Mybatis-Spring项目中,是通过 MapperFactoryBean 的 getObject()方法来获取到Mapper的代理类并注入到Spring容器中的.在学习本章之前我们先提出以下几点问题: 1. Mapper接口是如何被加载 到 Configuration 中的? 2. Mapper代理类是如何生成的? 3. Mapper代理类是如何实现接口方法的?    本章内容就是围绕着上面三个…
目录前言源码解析主函数自定义模型遮蔽词预测下一句预测规范化数据集前言本部分介绍BERT训练过程,BERT模型训练过程是在自己的TPU上进行的,这部分我没做过研究所以不做深入探讨.BERT针对两个任务同时训练.1.下一句预测.2.遮蔽词识别下面介绍BERT的预训练模型run_pretraining.py是怎么训练的. 源码解析主函数训练过程主要用了estimator调度器.这个调度器支持自定义训练过程,将训练集传入之后自动训练.详情见注释 def main(_): tf.logging.set_v…
目录预训练源码结构简介输入输出源码解析参数主函数创建训练实例下一句预测&实例生成随机遮蔽输出结果一览预训练源码结构简介关于BERT,简单来说,它是一个基于Transformer架构,结合遮蔽词预测和上下句识别的预训练NLP模型.至于效果:在11种不同NLP测试中创出最佳成绩关于介绍BERT的文章我看了一些,个人感觉介绍的最全面的是机器之心再放上谷歌官方源码链接:BERT官方源码在看本博客之前,读者先要了解:1.Transformer架构2.BERT模型的创新之处3.python语言及tensor…
目录前言源码解析模型配置参数BertModelword embeddingembedding_postprocessorTransformerself_attention模型应用前言BERT的模型主要是基于Transformer架构(论文:Attention is all you need).它抛开了RNN等固有模式,直接用注意力机制处理Seq2Seq问题,体现了大道至简的思想.网上对此模型解析的资料有很多,但大都千篇一律.这里推荐知乎的一篇<Attention is all you need>…
上篇博客我们详细的聊了ReactiveSwift源码中的Bag容器,详情请参见<ReactiveSwift源码解析之Bag容器>.本篇博客我们就来聊一下信号量,也就是Signal的的几种状态以及Signal的基本实现.当然本篇博客所解析的源码会用到上篇博客介绍的Bag容器.本篇博客我们先通过一个示例来看一下Signal是如何工作的,具体说来就是Signal是如何与Observer关联的,来聊一下Observer是如何观察和Signal发出的信号的. 之前我们也详细的聊过Observer和Eve…
上篇博客我们详细的聊了ReactiveSwift源码中的Bag容器,详情请参见<ReactiveSwift源码解析之Bag容器>.本篇博客我们就来聊一下信号量,也就是Signal的的几种状态以及Signal的基本实现.当然本篇博客所解析的源码会用到上篇博客介绍的Bag容器.本篇博客我们先通过一个示例来看一下Signal是如何工作的,具体说来就是Signal是如何与Observer关联的,来聊一下Observer是如何观察和Signal发出的信号的. 之前我们也详细的聊过Observer和Eve…
1.refs三种使用用法 1.字符串 1.1 dom节点上使用 获取真实的dom节点 //使用步骤: 1. <input ref="stringRef" /> 2. this.refs.stringRef //值:<input /> 1.2 类组件上使用 获取引用类组件的实例 //使用步骤 1. <Child ref="compStringRef" /> 2.this.refs.compStringRef //值:{props:{…
我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检测,以及如何使用谷歌提供的目标检测模型训练自己的数据.在训练自己的数据集时,主要包括以下几步: 制作自己的数据集,注意这里数据集在进行标注时,需要按照一定的格式.然后调object_detection\dataset_tools下对应的脚本生成tfrecord文件.如下图,如果我们想调用create…