正态分布及3Sigma原理】的更多相关文章

针对这个问题,用一两句话是难以说清楚的,这是数理统计学的内容,当质量特性呈正态分布时(实际上,当样本足够大时,二项分布.泊松分布等均趋近于正态分布),3Sigma水平代表了99.73%的合格率…
二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算是进行了一些尝试学习,觉得还是需要学习一下机器学习原理的,所以重新啃起了吴恩达的cs229,上次(5月份的时候?)就是在多元高斯分布这里吃的瘪,看不下去了,这次觉定稳扎稳打,不求速度多实践实践,尽量理解数学原理,所以再次看到这部分时决定把这个分布复现出来,吴恩达大佬用的matlab,我用的pytho…
title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywords: - The Normal Distributions toc: true date: 2018-03-29 15:02:03 Abstract: 本文介绍正态分布的数学性质 Keywords: The Normal Distributions 开篇废话 一共要写四篇,哪来那么多废话. 首先我…
1.层别法 层别法就是将大量有关某一特定主题的观点.意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别.层别法一般和柏拉图.直方图等其它七大手法结合使用,也可单独使用. 2.查检表 检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表. 3.柏拉图 柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形.它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
C语言 产生标准正态分布或高斯分布 随机数 产生正态分布或高斯分布的三种方法: 1. 运用中心极限定理(大数定理) #include #include #define NSUM 25 double gaussrand() { ; int i; ; i < NSUM; i++) { x += (double)rand() / RAND_MAX; } x -= NSUM / 2.0; x /= sqrt(NSUM / 12.0); return x; } 2.利用有box 和 muller 提供的,…
Atitit Gaussian Blur 高斯模糊 的原理and实现and 用途 1.1. 高斯模糊 的原理(周边像素的平均值+正态分布的权重1 1.2. 高斯模糊 的用途(磨皮,毛玻璃效果,背景虚化1 1.3. 参数radus1 1.4. 高斯模糊 的实现(第三方库)1 1.5. Java  源码1 1.1. 高斯模糊 的原理(周边像素的平均值+正态分布的权重 高斯模糊_百度百科.html 通常,图像处理软件会提供"模糊"(blur)滤镜,使图片产生模糊的效果 "模糊&qu…
Atitit机器学习原理与概论book attilax总结 <机器学习(决战大数据时代!IT技术人员不得不读!)>((美)米歇尔(Mitchell)[简介_书评_在线阅读] -1 <机器学习导论(原书第3版)>((土)埃塞姆 阿培丁(Ethem Alpaydin))[简介_书评_在线阅读] -1 <机器学习>([英] 弗拉赫(Peter Flach))[简介_书评_在线阅读] -2 <机器学习(决战大数据时代!IT技术人员不得不读!)>((美)米歇尔(Mit…
Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为下一刻钟的温度等于现在的温度.但是经验是存在误差的,下一刻的真实温度可能比我们预测温度上下偏差几度,这个偏差可以认为服从高斯分布.另外我们也可以使用温度计测量温度,但温度计测量的是局部空间的温度,没办法准确的度量整间房子的平均温度.测量值和真实值得偏差也认为服从高斯分布. 现在希望由经验的预测温度和…