首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
『科学计算』通过代码理解线性回归&Logistic回归模型
】的更多相关文章
『科学计算』通过代码理解线性回归&Logistic回归模型
sklearn线性回归模型 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model def get_data(): #506行,14列,最后一列为label,前面13列为参数 data_original = np.loadtxt('housing.data') scale_data = scale_n(data_original) np.random.shuffle(scale_dat…
『科学计算』通过代码理解SoftMax多分类
SoftMax实际上是Logistic的推广,当分类数为2的时候会退化为Logistic分类 其计算公式和损失函数如下, 梯度如下, 1{条件} 表示True为1,False为0,在下图中亦即对于每个样本只有正确的分类才取1,对于损失函数实际上只有m个表达式(m个样本每个有一个正确的分类)相加, 对于梯度实际上是把我们以前的最后一层和分类层合并了: 第一步则和之前的求法类似,1-概率 & 0-概率组成向量,作为分类层的梯度,对batch数据实现的话就是建立一个(m,k)的01矩阵,直接点乘控制开…
『科学计算』L0、L1与L2范数_理解
『教程』L0.L1与L2范数 一.L0范数.L1范数.参数稀疏 L0范数是指向量中非0的元素的个数.如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的. 既然L0可以实现稀疏,为什么不用L0,而要用L1呢?一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解.所以大家才把目光和万千宠爱转于L1范数. 总结:L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用.…
『科学计算』可视化二元正态分布&3D科学可视化实战
二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算是进行了一些尝试学习,觉得还是需要学习一下机器学习原理的,所以重新啃起了吴恩达的cs229,上次(5月份的时候?)就是在多元高斯分布这里吃的瘪,看不下去了,这次觉定稳扎稳打,不求速度多实践实践,尽量理解数学原理,所以再次看到这部分时决定把这个分布复现出来,吴恩达大佬用的matlab,我用的pytho…
『科学计算』科学绘图库matplotlib学习之绘制动画
基础 1.matplotlib绘图函数接收两个等长list,第一个作为集合x坐标,第二个作为集合y坐标 2.基本函数: animation.FuncAnimation(fig, update_point,data) fig是画布 update是绘画函数需自己定义,需要一个参数,会自动接收data,需要返回plt.plot对象,描述比较费解,看例子就好 data种类很多,包括总帧数(例1).当前帧数(即不设定data的默认参数,例2).返回迭代器的函数(例3).list(作业2) frames=2…
『科学计算』图像检测微型demo
这里是课上老师给出的一个示例程序,演示图像检测的过程,本来以为是传统的滑窗检测,但实际上引入了selectivesearch来选择候选窗,所以看思路应该是RCNN的范畴,蛮有意思的,由于老师的注释写的蛮好的,我基本就不画蛇添足了,这里记录下来,为加深理解cs231n的课程做个铺垫.,所以做个储备,实在不行还有开学不是么233 # coding: utf-8 #copyRight by heibanke #如需转载请注明出处 #<<用Python做深度学习1-数学基础>> #http…
『科学计算』科学绘图库matplotlib练习
思想:万物皆对象 作业 第一题: import numpy as np import matplotlib.pyplot as plt x = [1, 2, 3, 1] y = [1, 3, 0, 1] def plot_picture(x, y): plt.plot(x, y, color='r', linewidth='2', linestyle='--', marker='D', label='one') plt.xticks(list(range(-5,5,1))) plt.yticks…
『TensorFlow』通过代码理解gan网络_中
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使用的是tf.image.resize_image(),不太正规,不过其他部分很标准,值得参考学习. 辨别器: n,28,28,1 :卷积 + 激活 + 池化 n,14,14,32 :卷积 + 激活 + 池化 n,7,7,64 :reshape n,7*7*64 :全连接 + 激活 n,…
机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ ) 回想…
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake的就是tf.zeros. 网络具体形状大体如上,具体数值有所调整,生成器过程为:噪声向量-全连接-卷积-卷积-卷积,辨别器过程:图片-卷积-卷积-全连接-全连接. 和预想的不同,实际上数据在生成器中并不是从无到有由小变大的过程,而是由3136(56*56)经过正常卷积步骤下降为28*28的过程. 实…