本篇文章内容来自2016年TOP100summit Twitter technical lead for Heron Maosong Fu 的案例分享. 编辑:Cynthia Maosong Fu:Technical Lead for Heron at Twitter 导读:人们需要处理的数据规模和对结果的响应速度需求增长得越来越快,但摩尔定律逐渐失效,系统设计者再也无法简单地通过硬件升级来获得巨大的性能提升.这时,我们希望可以把过去的单机任务分割给许多计算机进行并行处理.我们需要分布式系统,从…
作者介绍 倪增光,饿了么BDI-大数据平台研发高级技术经理,曾先后就职于PPTV.唯品会.15年加入饿了么,组建数据架构team,整体负责离线平台.实时平台.平台工具的开发和运维,先后经历了唯品会.饿了么数据平台从无到有到不断完善的过程.   一.背景 饿了么BDI-大数据平台研发团队目前共有20人左右,主要负责离线&实时 Infra 和平台工具开发,其中包括20+组件的开发和维护.2K+ Servers 运维及数据平台周边衍生工具研发&维护.离线 Infra 和平台工具这一块对外分享的比…
文 | 潘国庆 携程大数据平台实时计算平台负责人 本文主要从携程大数据平台概况.架构设计及实现.在实现当中踩坑及填坑的过程.实时计算领域详细的应用场景,以及未来规划五个方面阐述携程实时计算平台架构与实践,希望对需要构建实时数据平台的公司和同学有所借鉴. 一.携程大数据平台之总体架构 携程大数据平台结构分为三层: 应用层:开发平台Zeus(分为调度系统.Datax数据传输系统.主数据系统.数据质量系统).查询平台(ArtNova报表系统.Adhoc查询).机器学习(基于tensorflow.spa…
克拉克拉(KilaKila):大规模实时计算平台架构实战 一.产品背景:克拉克拉(KilaKila)是国内专注二次元.主打年轻用户的娱乐互动内容社区软件.KilaKila推出互动语音直播.短视频配音.对话小说等功能,满足当下年轻用户个性化.碎片化的文娱需求.App用户等级体系作为克拉克拉社区化打造的核心业务,在增强社区活跃度.提高产品留存方面起到至关重要的作用.随着业务规模增长,海量用户行为日志实时采集与计算的瓶颈也日益突出,由于单台服务器的处理能力有限,海量数据分析需要分布式计算模型来替代.通…
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构例如以下图: 用户编写公布topoloy到Aurora调度器.每个topology都作为一个Aurora的job在执行.每个job包含几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master.其它的Cont…
Twitter 新一代流处理工具--Heron 该纸币Storm Limitations (空格分隔): Streaming-Processing Storm Problems scalability, debug-ability, manageability, and efficient sharing of cluster resources with other data services. Storm Worker Architecture: Limitations Storm的work…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 新一代Flink计算引擎 (1) Flink概述 目前开源大数据计算引擎有很多的选择,比如流处理有Storm.Samza.Flink.Spark等,批处理有Spark.Hive.Pig.Flink等.既支持流处理又支持批处理的计算引擎只有Apache Flink和Apache Spark. 虽然Spar…
上一个十年,以 Hadoop 为代表的大数据技术发展如火如荼,各种数据平台.数据湖.数据中台等产品和解决方案层出不穷,这些方案最常用的场景包括统一汇聚企业数据,并对这些离线数据进行分析洞察,来达到辅助决策或者辅助营销的目的,像传统的 BI 报表.数据大屏.标签画像等等. 但企业中除了这样的分析型业务(OLAP),还同时存在对数据实时性要求更高的交互型业务场景(OLTP 或 Operational Applications),例如电商行业常见的统一商品或订单查询.金融行业的实时风控.服务行业的客户…
一.理想与现实 Apache Flink 是一个分布式流批一体化的开源平台.Flink 的核心是一个提供数据分发.通信以及自动容错的流计算引擎.Flink 在流计算之上构建批处理,并且原生的支持迭代计算,内存管理以及程序优化. 实时计算(Alibaba Cloud Realtime Compute,Powered by Ververica)是阿里云提供的基于 Apache Flink 构建的企业级大数据计算平台.在 PB 级别的数据集上可以支持亚秒级别的处理延时,赋能用户标准实时数据处理流程和行…
5000量子位支持量子编程,D-Wave推出下一代量子计算平台计划 近日,全球量子商用化重要参与者 D-Wave 公司又有大动作:推出其5000量子比特量子计算的发展蓝图.D-Wave 下一代量子计算平台的各个组成部分将计划在 2020 年中进入市场.其中包括了研发中的量子处理器(Quantum Computing Unit,以下简称 QPU)和云服务的更新.完整的系统将会在 2020 年中叶以本地安装与云服务两种方式的形式投入市场. 恰如二进制比特是经典计算的基本单元,量子比特则是量子计算的基…
本篇文章内容来自2016年TOP100summitWalmartLabs实验室广告平台首席工程师.架构师粟迪夫的案例分享. 编辑:Cynthia 粟迪夫:WalmartLabs实验室广告平台首席工程师.架构师 在大数据平台架构设计.消息中间件.分布式系统等领域有丰富经验. 作为技术负责人,帮助多家企业搭建了大数据平台和分布式系统. 目前主导WMX大数据平台.广告效益分析系统和实时数据管道的开发. 导读:作为世界上最大的商品零售商,沃尔玛每天都投放大量的广告.产生大量的商品交易,生成大量数据,需要…
本篇文章内容来自2016年TOP100summit华为架构部资深架构师王启军的案例分享.编辑:Cynthia 王启军:华为架构部资深架构师.负责华为的云化.微服务架构推进落地,前后参与了华为手机祥云4.0.物联网IoT2.0的架构设计.曾任当当网架构师,主导电商平台架构设计,包括订单.支付.价格.库存.物流等.曾就职于搜狐负责手机微博的研发.“奔跑中的蜗牛”公众号博主. 导读:随着云时代的来临,软件架构日新月异,各种新技术层出不穷.“微服务”这个词更是如火如荼,得到了业界的广泛认可.但是,微服务…
目       录 1.      概述... 2 2.      平台演示... 2 3.      设备容器新版本介绍... 2 4.      全局数据计算及预警平台... 3 5.      设备数据计算及预警... 4 6.      独立数据点的预警... 5 1.   概述 这次升级主要对iNeuKernel设备容器全面进行改版和升级,以及增加对设备数据和独立数据点进行计算及预警. iNeuKernel是iNeuOS内核设备运行容器,是以物理设备或传感器为核心构建的框架,可以随意挂…
Storm 实战:构建大数据实时计算(阿里巴巴集团技术丛书,大数据丛书.大型互联网公司大数据实时处理干货分享!来自淘宝一线技术团队的丰富实践,快速掌握Storm技术精髓!) 阿里巴巴集团数据平台事业部商家数据业务部 编著 ISBN 978-7-121-22649-6 2014年8月出版 定价:59.00元 184页 16开 编辑推荐 Storm以其简单.灵活.健壮而著称.随着大数据实时处理需求的强劲增长,Storm的出现填补了大数据处理生态系统的缺失,并被越来越多的公司所采用. <Storm实战…
前言 在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算.随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop.Storm.Spark.Flink).在网上有人将大数据计算引擎的发展分为四个阶段. 第一代:Hadoop 承载的 MapReduce 第二代:支持 DAG(有向无环图)框架的计算引擎 Tez 和 Oozie,主要还是批处理任务 第三代:支持 Job 内部的 DAG(有向无环图),以…
1.概述 最近有同学问道,除了使用 Storm 充当实时计算的模型外,还有木有其他的方式来实现实时计算的业务.了解到,在使用 Storm 时,需要编写基于编程语言的代码.比如,要实现一个流水指标的统计,需要去编写相应的业务代码,能不能有一种简便的方式来实现这一需求.在解答了该同学的疑惑后,整理了该实现方案的一个案例,供后面的同学学习参考. 2.内容 实现该方案,整体的流程是不变的,我这里只是替换了其计算模型,将 Storm 替换为 Spark,原先的数据收集,存储依然可以保留. 2.1 Spar…
本文是作者在充分阅读和理解Yahoo!最新发布的技术论文<S4:Distributed Stream Computing Platform>的基础上,所做出的知识分享. S4是Yahoo!在2010年10月开源的一套通用.分布式.可扩展.部分容错.具备可插拔功能的平台.这套平台主要是为了方便开发者开发处理流式数据(continuous unbounded streams of data)的应用.项目官方网站为:http://s4.io/.同时,S4的开发者也发表了一篇技术论文<S4:Di…
摘要:如何基于 Flink 搭建大规模准实时数据分析平台?在 Flink Forward Asia 2019 上,来自 Lyft 公司实时数据平台的徐赢博士和计算数据平台的高立博士分享了 Lyft 基于 Apache Flink 的大规模准实时数据分析平台. 查看FFA大会视频. 本次分享主要分为四个方面: Lyft 的流数据与场景 准实时数据分析平台和架构 平台性能及容错深入分析 总结与未来展望 重要:文末「阅读原文」可查看 Flink Forward Asia 大会视频. 一.Lyft 的流…
目       录 1.      概述... 2 2.      平台演示... 2 3.      增加按钮组态元件... 2 4.      组态图元旋转及动画... 3 5.      后台容器管理... 3 6.      重新启动后台iNeuKernel设备容器服务... 4 7.      重新加载后台iNeuKernel设备容器配置... 5 8.      下发设备控制命令... 5 9.      iNeuCompute计算平台... 6 10.   设备数据转发... 8…
题记:昨晚在一个技术社区直播分享了"利用Azure Functions和k8s构建Serverless计算平台"这一话题.整个分享分为4个部分:Serverless概念的介绍.Azure Functions的简单介绍.k8s和KEDA的介绍和最后的演示. Serverless Serverless其实包含了两种概念:BaaS(Backend as a Service)和FaaS(Function as a Service).这次的分享主要针对的是FaaS概念. FaaS的最大特征就是:…
虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreaming. SparkStreaming对于时间窗口,事件时间虽然支撑较少,但还是可以满足部分的实时计算场景的,SparkStreaming资料较多,这里也做一个简单介绍. 一. 什么是Spark Streaming Spark Streaming在当时是为了与当时的Apache Storm竞争,也让S…
流式计算平台-Storm 我们以Storm为例来看流式计算的功能是什么. 下面内容引用自大圆的博客.在Storm中,一个实时应用的计算任务被打包作为Topology发布,这同Hadoop的MapReduce任务相似.但是有一点不同的是:在Hadoop中,MapReduce任务最终会执行完成后结束:而在Storm中,Topology任务一旦提交后永远不会结束,除非你显示去停止任务. 计算任务Topology是由不同的Spouts和Bolts,通过数据流(Stream)连接起来的图.下面是一个Top…
hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理.实时统计.实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数据库中如HBase,便于后续的查询. 面对的大批量的数据的实时计算,storm实现了一个可扩展的.低延迟.可靠性和容错的分布式计算平台. 1.对象介绍 tuple:表示流中一个基本的处理单元,可以包括多个field,每个filed表示一个属性 topology:一个拓扑是一个个计算节点组成的图,每个…
2019 年 3 月 23 日,OpenResty 社区联合又拍云,举办 OpenResty × Open Talk 全国巡回沙龙·北京站,Polaristech 技术专家刘洋在活动上做了<基于 OpenResty / Kong 构建边缘计算平台>的分享. OpenResty x Open Talk 全国巡回沙龙是由 OpenResty 社区.又拍云发起,邀请业内资深的 OpenResty 技术专家,分享 OpenResty 实战经验,增进 OpenResty 使用者的交流与学习,推动 Ope…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark Streaming相对其他实时计算框架该如何技术选型? 本文主要针对初学者,如果有不明白的概念可了解之前的博客内容. 1.什么是Spark Streaming? 与其他大数据框架Storm.Flink一样,Spark Streaming是基于Spark Core基础之上用于处理实时计算业务的框架.其实…
http://edu.51cto.com/roadmap/view/id-29.html http://my.oschina.net/infiniteSpace/blog/308401 大数据实时计算工程师/Hadoop工程师/数据分析师职业路线图 描述 本路线图是一个专门针对大数据实时处理.Hadoop工程师和数据分析师所设计的课程体系介绍,在实时计算方向主要包括了从数据收集框架.集群协调框架.数据缓存框架到实时计算框架都全面进行深度解析,让一个普通的开发人员迅速成为实时计算领域的领跑者.也从…
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑.这也得益于Scala编程语言的简洁性.这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时计算.我们的应用场景是分析用户使用手机App的行为,描述如下所示: 手机客户端会收集用户的行为事件(我们以点击事…
在12月2日下午的“大数据技术与应用”分论坛的第一场演讲中,来自全球知名互联网公司——FaceBook公司的软件工程师.研发经理邵铮就带来了一颗重磅炸弹,他将为我们讲解FaceBook公司的实时数据处理分析平台的核心——Puma的演进以及未来的发展思路. FaceBook公司自成立以来发展就非常迅猛,时至今日,每天都有数以万计的人活跃在FaceBook之上,这一庞大的用户群体吸引了大量的企业的注意力,他们希望通过FaceBook这一平台对自己的产品或服务进行营销,以精准找到自己的潜在用户.要精准…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…