视觉机器学习笔记------CNN学习】的更多相关文章

卷积神经网络是第一个被成功训练的多层神经网络结构,具有较强的容错.自学习及并行处理能力. 一.基本原理 1.CNN算法思想 卷积神经网络可以看作为前馈网络的特例,主要在网络结构上对前馈网络进行简化和改进,从理论上讲,反向传播算法可以用于训练卷积神经网络.卷积神经网络被广泛用于语音识别和图像分类等问题. 2.CNN网络结构 卷积神经网络是一种多层前馈网络,每层由多个二维平面组成.每个平面由多个神经元组成. 网络输入为二维视觉模式,作为网络中间层的卷积层(C)和抽样层(S)交替出现.网络输出层为前馈…
集成学习(Ensemble  learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优化策略.因为单个机器学习模型所能解决的问题有限,泛化能力差,但是通过构建组合多个学习器来完成学习任务往往能够获得奇效,这些学习器可以看成一个个基本单元,由他们组合最终形成一个强大的整体,该整体可以解决更复杂的问题,其思想可以形象的概括为三个臭皮匠赛过诸葛亮. 集成学习是机器学习的一大分支,他通过建立…
6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/测试集(Model selection and training/validation/test sets) 6.4 偏差与方差 6.4.1 Diagnosing bias vs. variance. 6.4.2 正则化与偏差/方差(Regularization and bias/variance)…
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的.它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值.直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要.池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合.通常来说,CNN的卷积层之间都…
CNN学习笔记:Logistic回归 线性回归 二分类问题 Logistic回归是一个用于二分分类的算法,比如我们有一张图片,判断其是否为一张猫图,为猫输出1,否则输出0. 基本术语 进行机器学习,首先要有数据,比如我们收集了一批关于西瓜的数据,例如 (色泽=青绿:根蒂=收缩:敲声=浊响) (色泽=乌黑:根蒂=稍蜷:敲声=沉闷) (色泽=浅白:根蒂=硬挺:敲声=清脆) 每对括号内是一条记录,这组记录的集合称为一个数据集,每条记录是关于一个事件或对象的描述,称为一个示例或样本,反映事件或对象在某方…
CNN学习笔记:正则化缓解过拟合 过拟合现象 在下图中,虽然绿线完美的匹配训练数据,但太过依赖,并且与黑线相比,对于新的测试数据上会具有更高的错误率.虽然这个模型在训练数据集上的正确率很高,但这个模型却很难对从未见过的数据做出正确响应,认为该模型存在过拟合现象. 绿线代表过拟合模型,黑线代表正则化模型.故我们使用正则化来解决过拟合问题. 正则化模型 正则化是机器学习中通过显示控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了训…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过程中,随着网络深度的增加,后面每一层的输入值(即x=WU+B,U是输入)逐渐发生偏移和变动,之所以训练收敛慢,一般是整体分布往非线性函数的取值区间的上下限两端靠近,所以这将导致反向传播时低层网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因,而BN就是通过一定的规范手动,把每层神经网络任意神…
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi∈{1,2,...,C},另h=(h1,h2,...,hC)⊤为网络的最终输出,即样本i的预测结果,其中C为分类任务类别数. 交叉熵损失函数 交叉熵损失函数又称为Softmax损失函数,是目前卷积神经网络中最常用的分类…