hadoop中遇到的一些问题】的更多相关文章

Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBI…
1.Java动态代理实例 Java 动态代理一个简单的demo:(用以对比Hadoop中的动态代理) Hello接口: public interface Hello { void sayHello(String to); void print(String p); } Hello接口的实现类: public class HelloImpl implements Hello {           public void sayHello(String to) {          System.…
在hadoop中使用lzo的压缩算法可以减小数据的大小和数据的磁盘读写时间,不仅如此,lzo是基于block分块的,这样他就允许数据被分解成chunk,并行的被hadoop处理.这样的特点,就可以让lzo在hadoop上成为一种非常好用的压缩格式. lzo本身不是splitable的,所以当数据为text格式时,用lzo压缩出来的数据当做job的输入是一个文件作为一个map.但是sequencefile本身是分块的,所以sequencefile格式的文件,再配上lzo的压缩格式,就可实现lzo文…
1.WritableComparable 查看HadoopAPI,如图所示: WritableComparable继承自Writable和java.lang.Comparable接口,是一个Writable也是一个Comparable,也就是说,既可以序列化,也可以比较! 再看看它的实现类,发现BooleanWritable, BytesWritable, ByteWritable, DoubleWritable, FloatWritable, IntWritable, LongWritable…
secondarynamenode 图: secondarynamenode根据文件的的大小对namenode的编辑日志和镜像日志 进行合并. 光从字面上来理解,很容易让一些初学者先入为主的认为:SecondaryNameNode(snn)就是NameNode(nn)的热备进程.其 实不是.snn是HDFS架构中的一个组成部分,但是经常由于名字而被人误解它真正的用途,其实它真正的用途,是用来保存namenode中对HDFS metadata的信息的备份,并减少namenode重启的时间.对于ha…
Hadoop中的Map Reduce框架依赖InputFormat提供数据,依赖OutputFormat输出数据,每一个Map Reduce程序都离不开它们.Hadoop提供了一系列InputFormat和OutputFormat方便开发,本文介绍几种常用的: TextInputFormat 作为默认的文件输入格式,用于读取纯文本文件,文件被分为一系列以LF或者CR结束的行,key是每一行的位置偏移量,是LongWritable类型的,value是每一行的内容,为Text类型. KeyValue…
hadoop 中 的Text类与java中的String类感觉上用法是相似的,但两者在编码格式和访问方式上还是有些差别的,要说明这个问题,首先得了解几个概念: 字符集: 是一个系统支持的所有抽象字符的集合.字符是各种文字和符号的总称,包括各国家文字.标点符号.图形符号.数字等.例如 unicode就是一个字符集,它的目标是涵盖世界上所有国家的文字和符号: 字符编码:是一套法则,使用该法则能够对自然语言的字符的一个集合(如字母表或音节表),与其他东西的一个集合(如号码或电脉冲)进行配对.即在符号集…
hadoop 中对java的基本类型进行了writeable的封装,并且所有这些writeable都是继承自WritableComparable的,都是可比较的:并且,它们都有对应的get() 和 set()方法, 其中对整型(int 和 long)进行编码的时候,有固定长度格式(intWritable和LongWritable)和可变长度格式(VIntWritable 和 VLongWritable),其中VIntWritable和VLongWritable的编码规则是一样的, 所以VIntW…
1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的.而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2. 2.1 reduce side join reduce side join是一种最简单的join方式,其主…
Hadoop 中疑问解析 FAQ问题剖析 一.HDFS 文件备份与数据安全性分析1 HDFS 原理分析1.1 Hdfs master/slave模型 hdfs采用的是master/slave模型,一个hdfs cluster包含一个NameNode和一些列的DataNode,其中NameNode充当的是master的角色,主要负责管理hdfs文件系统,接受来自客户端的请求:DataNode主要是用来存储数据文件,hdfs将一个文件分割成一个或多个的block,这些block可能存储在一个Data…