本期内容 : ReceiverTracker的架构设计 消息循环系统 ReceiverTracker具体实现 一. ReceiverTracker的架构设计 1. ReceiverTracker可以以Driver中的具体自己的算法来在具体的Execute中启动Receiver,启动Receiver的方式会把每个Receiver都封装成为一个Tracker, Tracker是这个Job中唯一的Tracker,实质上讲ReceiverTracker启动Receiver的方式就是封装成一个个Job ,…
上篇文章详细解析了Receiver不断接收数据的过程,在Receiver接收数据的过程中会将数据的元信息发送给ReceiverTracker:   本文将详细解析ReceiverTracker的的架构设计和具体实现   一.ReceiverTracker的主要功能     ReceiverTracker的主要功能有:     1.在Executor上启动Receivers     2.接受Receiver的注册     3.借助ReceivedBlockTracker来管理Receiver接收数…
本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收…
本期内容 : ReceivedBlockTracker容错安全性 DStreamGraph和JobGenerator容错安全性 Driver的安全性主要从Spark Streaming自己运行机制的角度考虑的,如对源数据保存方面使用了WAL方式,驱动层面的容错安全主要使用的是CheckPoint , 但是仅仅是WAL和CheckPoint在生成环境下不是完全足够的. Spark Streaming 的Driver容错为什么是这两个方面 : 1. ReceiverBlockTracker主要管理整…
本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环,另外一条是处理线程,同时需要把调度与执行分离开. 一. 作业流程源码 : 首先只要定义了BatchDuration后就规定了按照什么样的频率生成具体的Job ,也就是Job生成的频率: 按照一定的频率操作ForeachRDD : 我们设置每隔5秒钟都会生成一个Spark 的Job ,Job其实其内部…
在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Approach)的方式,No Receiver的方式的优势: 1. 更强的控制自由度 2. 语义一致性  其实No Receivers的方式更符合我们读取数据,操作数据的思路的.因为Spark 本身是一个计算框架,他底层会有数据来源,如果没有Receivers,我们直接操作数据来源,这其实是一种更自然的方…
本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Receiver存储数据,C级别的,Receiver是个抽象因为他有好多的Receiver 2. ReceiverSupervisor 是控制器,因为Receiver启动是靠ReceiverSuperior启动的,及接收到的数据交给ReceiverSuperior存储数据的 3. Driver会获得源数据,…
本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Teark启动都有可能运行失败. 启动一个应用程序的不同Receiver采用一个不同RDD的partion代表不同的Receiver ,然后启动的时候不同的partion执行层面是不同的Teark ,每个Teark启动的时候就真正的启动一个Receiver. 优点: 这种比较简单,就是使用Spark Co…
本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有什么不同的 3. 运行之后我们要怎么处理 为什么有第三点 : 是因为Spark Streaming 中会随着相关触发条件,窗口Window滑动的时候都会不断的产生RDD , 从最基本的层次考虑,RDD也是基本对象,每秒会产生RDD ,内存能不能完全容纳,每个处理完成后怎么进行管理? 一. 整个Spa…
本期内容 : Spark Streaming Job生成深度思考 Spark Streaming Job生成源码解析 Spark Core中的Job就是一个运行的作业,就是具体做的某一件事,这里的JOB由于它是基于Spark Core所以Spark Streaming对其进行了封装. 大数据开发应用中少不了定时任务,是否相当于流式处理,只是期间的时间间隔的不同而已,所以数据都可以认为是流式处理. 一. JobGenerator 作业动态生成的一个类 : JobGenerator是个普通的类,作业…