Delphi FrieDAC 大数据处理】的更多相关文章

Delphi FrieDAC 大数据处理 大数据处理, 要用到Array DML 插入数据 先要设置插入的数据量 FQuery1.Params.ArraySize := 1000; for index:= 0 to 1000 -1  to begin FQuery1.Params.ParamByName.AsString[index] := '值': FQuery1.Params.ParamByName.AsString[index] := '值': FQuery1.Params.ParamBy…
相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy…
原文: http://www.36dsj.com/archives/25042 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务.集群管理.RPC.基础设施.搜索引擎.Iaas和监控管理等大数据开源工具. 日志收集系统 一.Facebook Scribe 贡献者:Facebook 简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种日志源上收集日志,存储到一个中央存储…
DMP(数据管理平台)帮助广告主获得可行动的洞察 在数字广告领域,大数据和数据管理平台(DPMs)仍大有可为.DMPs让广告主可以使用他们的大数据来做出更灵活更有效的营销决策. 数据管理和分析是业界挑战 即便在品牌使用大数据来对他们的潜在和现有客户进行画像时,多数品牌会发现从数据中抽取跨渠道的洞察仍然极具挑战. Ziff Davis发现49%的全球受访企业在2012年秋季已经实现了数据管理策略.又根据Robert Half Technology的数据,只有23%的美国CIO表示他们在收集诸如人口…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及应用监控等重要模块 Spark生态圈深度检阅:SQL处理Shark和Spark SQL.流式处理Spark Streaming.图计算Graphx及内存文件系统Tachyon 内容简介 书籍计算机书籍 <Spark大数据处理技术>以Spark 0.9版本为基础进行编写,是一本全面介绍Spark及S…
hadoop大数据处理之表与表的连接 前言:  hadoop中表连接其实类似于我们用sqlserver对数据进行跨表查询时运用的inner join一样,两个连接的数据要有关系连接起来,中间必须有一个相等的字段进行连接,其实hadoop的表连接就是对文本的处理,处理的文本中有一部分的内容是一样的,然后把这鞋大量的数据按照中间的一个相同的部分进行连接,用来解决大数据在关系型数据库查询困难的问题. 之前一直做c#语言的开发是一个本本分分做网站开发的程序员,像对hadoop这类用java语言做开发的内…
在互联网的世界中数据都是以TB.PB的数量级来增加的,特别是像BAT光每天的日志文件一个盘都不够,更何况是还要基于这些数据进行分析挖掘,更甚者还要实时进行数据分析,学习,如双十一淘宝的交易量的实时展示. 大数据什么叫大?4个特征: 体量化 Volume,就是量大. 多样化 Variety,可能是结构型的数据,也可能是非结构行的文本,图片,视频,语音,日志,邮件等 快速化 Velocity,产生快,处理也需要快. 价值密度低 Value,数据量大,但单个数据没什么意义,需要宏观的统计体现其隐藏的价…
Hadoop的编程可以是在Linux环境或Winows环境中,在此以Windows环境为示例,以Eclipse工具为主(也可以用IDEA).网上也有很多开发的文章,在此也参考他们的内容只作简单的介绍和要点总结. Hadoop是一个强大的并行框架,它允许任务在其分布式集群上并行处理.但是编写.调试Hadoop程序都有很大难度.正因为如此,Hadoop的开发者开发出了Hadoop Eclipse插件,它在Hadoop的开发环境中嵌入了Eclipse,从而实现了开发环境的图形化,降低了编程难度.在安装…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
传统大数据处理 现代数据架构 Hadoop在20业务场景的应用 DataLake A data lake is a system or repository of data stored in its natural format, usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system dat…
Apache beam中的便携式有状态大数据处理 目标: 什么是 apache beam? 状态 计时器 例子&小demo 一.什么是 apache beam? 上面两个图片一个是正面切图,一个是横向切图: 这里只是大数据对于批量处理和流处理的一些生态圈的各个工具的发展前后历程,我觉着不够具体,总之,flink是beam的一种体现: Apache Beam本身不是一个流式处理平台,而是一个统一的编程框架,它提供了开源的.统一的编程模型,帮助你创建自己的数据处理流水线,实现可以运行在任意执行引擎之…
Apache Beam(原名Google DataFlow)是Google在2016年2月份贡献给Apache基金会的Apache孵化项目,被认为是继MapReduce,GFS和BigQuery等之后,Google在大数据处理领域对开源社区的又一个非常大的贡献.Apache Beam的主要目标是统一批处理和流处理的编程范式,为无限,乱序,web-scale的数据集处理提供简单灵活,功能丰富以及表达能力十分强大的SDK.Apache Beam项目重点在于数据处理的编程范式和接口定义,并不涉及具体执…
架构挑战 1.对现有数据库管理技术的挑战. 2.经典数据库技术并没有考虑数据的多类别(variety).SQL(结构化数据查询语言),在设计的一开始是没有考虑到非结构化数据的存储问题. 3.实时性技术的挑战:一般而言,传统数据仓库系统,BI应用,对处理时间的要求并不高.因此这类应用通过建模,运行1-2天获得结果依然没什么问题.但实时处理的要求,是区别大数据应用和传统数据仓库技术.BI技术的关键差别之一. 4.网络架构.数据中心.运维的挑战:随着每天创建的数据量爆炸性的增长,就数据保存来说,我们能…
Pivotal Pivots 开源大数据处理的核心组件 Pivotal 今天宣布将其大数据套件的三个核心组件开源,同时商业版本继续提供更高级特性和商业支持服务. 这三个开源的组件分别是: GemFire 内存中 NoSQL 数据库 HAWQ 大规模并行 SQL 分析处理引擎 Greenplum DB 大规模并行处理分析数据库 Pivotal 开源这三个核心组件最主要的原因是其成功的 Cloud Foundry 开源案例. 来自 Pivotal 数据产品组的经理和副总裁称:在 Cloud Foun…
大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的类型,作为程序入口: package bhz.topology; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.generated.StormTopology; impo…
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Storm 和 Apache Samza:· 混合框架:Apache Spark 和 Apache Flink) 水龙头出来的是水滴 不是水流柱说明单个数据量小,但是连续不断的,后面水滴加闪电 表示处理迅速. 一.storm架构结构 二.Strom和Hadoop 分类对比 两者应用场景不同:Storm:进程…
作者:大数据女神-诺蓝(微信公号:dashujunvshen).本文是36大数据专稿,转载必须标明来源36大数据. 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务.集群管理.RPC.基础设施.搜索引擎.Iaas和监控管理等大数据开源工具. 日志收集系统 一.Facebook Scribe 贡献者:Facebook 简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种…
大数据处理-Lambda架构-Kappa架构 elasticsearch-head Elasticsearch-sql client NLPchina/elasticsearch-sql: Use SQL to query Elasticsearch 360企业安全 V5.6SP1, 杨军01,您好! lamda 架构_百度搜索 Lambda架构 vs Kappa架构 - 数据源博客 - CSDN博客 数据系统架构——Lambda architecture(Lambda架构) - CSDN博客…
大数据技术正飞速地发展着,催生出一代又一代快速便捷的大数据处理引擎,无论是Hadoop.Storm,还是后来的Spark.Flink.然而,毕竟没有哪一个框架可以完全支持所有的应用场景,也就说明不可能有任何一个框架可以完全取代另一个.今天,将从几个项出发着重对比Spark与Flink这两个大数据处理引擎,探讨其两者的区别.   一.Spark与Flink几个主要项目的对比与分析 1.性能对比 测试环境: CPU:7000个 内存:单机128GB 版本:Hadoop 2.3.0,Spark 1.4…
大数据可以说是从搜索引擎诞生之处就有了,我们熟悉的搜索引擎,如百度搜索引擎.360搜索引擎等可以说是大数据技处理技术的最早的也是比较基础的一种应用.大概在2015年大数据都还不是非常火爆,2015年可以说是大数据的一个分水岭.随着互联网技术的快速发展,大数据也随之迎来它的发展高峰期. 整个大数据处理技术的核心基础hadoop.mapreduce.nosql系统,而这三个系统是建立在谷歌提出的大表.分布式文件系统和分布式计算的三大技术构架上,以此来解决海量数据处理的问题.虽然说大数据处理技术最早兴…
在学习redis的过程了,看到了redis还能用于大数据处理,具体场景如下: 腾讯10亿用户,要几个毫秒内查询到某个用户是否在线,你能怎么做?千万别说给每个用户建立一个key,然后挨个记(你可以算一下需要的内存会很恐怖,而且这种类似的需求很多,腾讯光这个得多花多少钱..) 原理是: redis内构建一个足够长的数组,每个数组元素只能是0和1两个值,然后这个数组的下标index用来表示我们上面例子里面的用户id(必须是数字哈),那么很显然,这个几亿长的大数组就能通过下标和元素值(0和1)来构建一个…
大数据处理--Bloom Filter 布隆过滤器(Bloom Filter)是由巴顿.布隆于一九七零年提出的.它实际上是一个很长的二进制向量和一系列随机映射函数. 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大.同时检索速度也越来越慢. Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filte…
Spark支持多种的编程语言 对比scala和Java编程上节课的计数程序.相比之下,scala简洁明了. Hadoop的IO开销大导致了延迟高,也就是说任务和任务之间涉及到I/O操作.前一个任务完成之前没有写入硬盘,下一个任务无法从硬盘当中获取数据,从而导致了这个高延迟. Spark与Hadoop的对比:Spark也是MapReduce,但是它的编程模式比Hadoop的MapReduce更灵活,而且会支持多种数据集的操作.其次呢,它不是从磁盘中读取数据,它是从内存中读取数据.我把结果中间结果写…
大规模的数据计算对于数据挖掘领域当中的作用.两大主要挑战:第一.如何实现分布式的计算 第二.分布式并行编程.Hadoop平台以及Map-reduce的编程方式解决了上面的几个问题.这是谷歌的一个最基本的计算模式,并且对于大规模数据的分析和处理是一种非常有效的方法.以下四个方面了解大数据处理平台Hadoop. 谷歌的解决方案 第一.我们需要计算节点去组成集群.这些点组成集群之后我们是通过网络将这些点连接到一起,从而完成计算和数据的分发. 在这样一种集群式的架构当中,我们是通过switch(交换机)…
大数据处理--Trie树 1.1.什么是Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高. Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. 它有3个基本性质: 1. 根节点不包含字符,除根节点外每一个节点都只包含一个字符. 2. 从根节点到某一节点…
几个关键性的概念 云计算:是指利用大量计算节点构成的可动态调整的虚拟化计算资源.通过并行化和分布式计算技术,实现业务质量可控的大数据处理的计算技术. NameNode:是HDFS系统中的管理者.它负责管理文件系统的命名空间.维护文件系统的文件树以及全部的文件和文件夹的元数据.这些信息存储在NameNode维护的两个本地磁盘文件:命名空间镜像文件和编辑日志文件. 同一时候,NameNode中还保存了每一个文件与数据块所在的DataNode的相应关系,这些信息被用于其它功能组件查找所需文件资源的数据…
大数据处理肯定是分布式的了,那就面临着几个核心问题:可扩展性,负载均衡,容错处理.Spark是如何处理这些问题的呢?接着上一篇的"动手写WordCount",今天要做的就是透过这个大数据界的HelloWorld来看看Spark隐藏了哪些魔法. 请各位看官,带着分布式的问题往下看. 分布式架构 大数据时代,单机装下PB级的数据,然后在可接受的时间内处理完,不可能,所以一定是分布式的. ▶ 分布式存储 HDFS(Hadoop Distributed File System)是最常见的,和S…
首先声明,我只是个程序员,不是专业的DBA,以下这篇文章是从一个问题的解决过程去写的,而不是一开始就给大家一个正确的结果,如果文中有不对的地方,请各位数据库大牛给予指正,以便我能够更好的处理此次业务. 项目背景 这是给某数据中心做的一个项目,项目难度之大令人发指,这个项目真正的让我感觉到了,商场如战场,而我只是其中的一个小兵,太多的战术,太多的高层之间的较量,太多的内幕了.具体这个项目的情况,我有空再写相关的博文出来. 这个项目是要求做环境监控,我们暂且把受监控的设备称为采集设备,采集设备的属性…