转https://www.cnblogs.com/litthorse/p/9332370.html 作为(曾)被认为两大最好的监督分类算法之一的adaboost元算法(另一个为前几节介绍过的SVM算法),该算法以其简单的思想解决复杂的分类问题,可谓是一种简单而强大的算法,本节主要简单介绍adaboost元算法,并以实例看看其效果如何. 该算法简单在于adaboost算法不需要什么高深的思想,它的基础就是一个个弱小的元结构(弱分类器),比如就是给一个阈值,大于阈值的一类,小于阈值的一类,这样的最简…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ----------------------------------------------------------------------------------------------------------------- 前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 这个思路称之…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性. 三. 能够同时处理数据型和常规型属性.其他的技术往往要求数据属性的单一. 四. 决策树是一个白盒模型.如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式. 五. 易于通过静态测试来对模型进行评测.表示有可能测量该…
一.概述 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm)背后的思路.元算法是对其他算法进行组合的一种方式.接下来我们将集中关注一个称作AdaBoost的最流行的元算法.由于某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 本章首先讨论不同分类器的集成方法,然后主要关注boosting方法及其代表分类器Adaboost.再接下来,我们就会建立一个单层决…
一.决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序.无规则的实例中 推理出以决策树表示的分类规则.构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别.它采用自顶向下的递归方式,在决策树的 内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论. 主要的决策树算法有ID3.C4.5(C5.0).CART.PUBLIC.SLIQ和SPRINT算法等.它们在选择测试属性采用的技术.生…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] 二十三.基于机器学习和TFIDF的情感分类(含详细的NLP数据清洗)>,作者: eastmount. 在数据分析和数据挖掘中,通常需要经历前期准备.数据爬取.数据预处理.数据分析.数据可视化.评估分析等步骤,而数据分析之前的工作几乎要花费数据工程师近一半的工作时间,其中的数据预处理也将直接影响后续模型…