AVL树旋转】的更多相关文章

关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A->Left = B->Right; B->Right = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + ; B->Height = Max(GetHeight(B->Left), A-&…
什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡条件:每个节点的左子树和右子树的高度最多相差1(空树的高度定义为-1). 什么是旋转?AVL树为什么需要用到旋转? 由于AVL树本身的性质,当我们插入节点时,有可能会破坏AVL树的平衡性,使一棵树的左子树和右子树的高度相差大于1,此时就需要对树进行一些简单的修正来恢复其性质,这个修正的过程就叫做旋转…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
定义:一棵AVL树或者是空树,或者是具有下列性质的二叉搜索树:它的左子树和右子树都是AVL树,且左右子树的高度之差的绝对值不超过1 AVL树失衡旋转总结: 假如以T为根的子树失衡.定义平衡因子为 H(left) – H(right) = bf (平衡因子,balance factor),T的左子树为L,右子树为R: 情形1:如果 bf(T) = 2,且bf(L)=1, 执行右旋转,高度减1: 情形2:如果 bf(T) =2 ,且bf(L)= -1, 执行先左后右旋转,高度减1: 情形3:如果 b…
先说说二叉搜索树: 是有序的二叉树,根值>左节点值,右节点值>根值. 如果要查找某个值,二叉搜索树和二分查找一样,每进行一次值比较,就会减少一半的遍历区间. 但是,如果树插入的值一直递增/递减,就会出现这种情况: 这样,二叉树性能就完全失去了,直接退化成了顺序表,查找效率低下. 由此,引入了能保持性能最佳的二叉搜索树. AVL树: 具有高度平衡的二叉搜索树. 性质: 1.它的左右子树都是AVL树   2.左右子树高度差(简称平衡因子)的绝对值不超过1                    搜索…
http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找.插入和删除操作在平均和最坏情况下时间复杂度都是O(log n) AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的. 1. LL型 平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡.…
=================================================================== AVL树的概念       在说AVL树的概念之前,我们需要清楚二茬搜索树的概念.对于二叉搜索树,我们知道它可以降低查找速率,但是如果一个二叉搜索树退化成一棵只剩单支的搜索树,此时的查找速率就相当于顺序表中查找元素,效率变低,时间复杂度由原来的O(logN)变为O(N).         此时就有了AVL(高度平衡二叉搜索树),从它的名字就能知道它也是一棵二叉搜…
[0]README 0.0) 本文部分idea 转自:http://blog.csdn.net/collonn/article/details/20128205 0.1) 本文仅针对性地分析AVL树的单旋转(左左单旋转和右右单旋转)和 双旋转(左右双旋转和右左单旋转)的内部核心技巧: 0.2) 不得不提的是,旋转有两个属性: 轴 和 旋转方向: (旋转轴即是原最小树经过旋转修正后的符合AVL的最小树的根节点)0.3) 旋转轴的确定 : (干货--单双旋转的旋转轴确定问题) 0.3.1)单旋转:旋…
把必须重新平衡的节点称为å.对于二叉树,å的两棵子树的高度最多相差2,这种不平衡可能有四种情况: 对å的左儿子的左子树进行插入节点(左-左) 对å的左儿子的右子树进行插入节点(左-右) 对å的右儿子的左子树进行插入节点(右-左) 对å的左儿子的右子树进行插入节点(右-右) 对于左-左和右-右需要单旋转(single rotation)即可完成调整.对于左-右和右-左则需要双旋转(souble rotation)即可完成调整. 最后show the code: trait Tree{self=>…