高并发系统的分析和设计 任何系统都不是独立于业务进行开发的,真正的系统是为了实现业务而开发的,所以开发高并发网站抢购时,都应该先分析业务需求和实际的场景,在完善这些需求之后才能进入系统开发阶段. 没有对业务进行分析就贸然开发系统是开发者的大忌.对于业务分析,首先是有效请求和无效请求,有效请求是指真实的需求,而无效请求则是虚假的抢购请求. 有效请求和无效请求 无效请求有很多种类,比如通过脚本连续刷新网站首页,使得网站频繁访问数据库和其他资源,造成性能持续下降,还有一些为了得到抢购商品,使用刷票软件…
随着互联网大潮的到来,越来越多网站,应用系统需要海量数据的支撑,高并发.低延迟.高可用.高扩展等要求在传统的关系型数据库中已经得不到满足,或者说关系型数据库应对这些需求已经显得力不从心了.关系型数据库经过几十年的发展已经很成熟,强大的sql语句支持,完美的ACID属性的支持,使得关系型数据库广泛应用于各种各样的应用系统中,但是应用的场景广泛并非意味着完美. - 由于关系型数据库是按行进行存储的,在某些只统计一列的需求场景下,也需要把整行读入内存,导致了一个小小的统计需求高IO的缺点 - 关系型数…
课程简介: 随着互联网的发展,高并发.大数据量的网站要求越来越高.而这些高要求都是基础的技术和细节组合而成的.本课程就从实际案例出发给大家原景重现高并发架构常用技术点及详细演练. 通过该课程的学习,普通的技术人员就可以快速搭建起千万级的高并发大数据网站平台. 亮点一:真实环境还原,课程采用了VM环境重现大网站集群服务器环境,真实环境还原再现. 亮点二:基础实用,细节决定成败,课程内容在演练过程中重点介绍各种细节,保证初级人员快速入门及高级进阶. 亮点三:讲师丰富的海量平台运作经验 讲师tom5多…
前言 其实所谓的高并发,如果你要理解这个问题呢,其实就得从高并发的根源出发,为啥会有高并发?为啥高并发就很牛逼? 说的浅显一点,很简单,就是因为刚开始系统都是连接数据库的,但是要知道数据库支撑到每秒并发两三千的时候,基本就快完了.所以才有说,很多公司,刚开始干的时候,技术比较 low,结果业务发展太快,有的时候系统扛不住压力就挂了. 当然会挂了,凭什么不挂?你数据库如果瞬间承载每秒 5000/8000,甚至上万的并发,一定会宕机,因为比如 mysql 就压根儿扛不住这么高的并发量. 所以为啥高并…
一.Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间:   3.redis使用多路复用技术,可以处理并发的连接.非阻塞IO 内部实现采用epoll,采用了epoll+自己实现的简单的事件框架.epoll中的读.写.关闭.连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间. 二.为什么Redis是单线程的 1.官方答案 因为Redis是基于内存的操作,CPU不是Redis的瓶颈,R…
一.单个实例 当系统中只有一台redis运行时,一旦该redis挂了,会导致整个系统无法运行. 单个实例 二.备份 由于单台redis出现单点故障,就会导致整个系统不可用,所以想到的办法自然就是备份(一般工业界认为比较安全的备份数应该是3份).当一台redis出现问题了,另一台redis可以继续提供服务. 备份 三.自动故障转移 虽然上面redis做了备份,看上去很完美.但由于redis目前只支持主从复制备份(不支持主主复制),当主redis挂了,从redis只能提供读服务,无法提供写服务.所以…
<Netty Zookeeper Redis 高并发实战> 图书简介 本书为 高并发社群 -- 疯狂创客圈 倾力编著, 高度剖析底层原理,深度解读面试难题 疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列 [博客园总入口 ] ## 重要的重复3遍: 本书 面试必备 + 面试必备 + 面试必备 <Netty Zookeeper Redis 高并发实战> 勘误 <Netty Zookeeper Redis 高并发实战> 特别声明 购买链接 京东商城<Net…
1. Redis的高并发和快速的原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接.非阻塞IO 内部实现采用epoll,采用了epoll+自己实现的简单的事件框架.epoll中的读.写.关闭.连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间. 下面重点介绍单线程设计和IO多路复用核心设计快的原因. 2. 为什么Redis是单线程的 官方答案 因为Re…
在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.…
针对大流量瞬间冲击,比如秒杀场景 redis前面可以加一层限流 sentinel / Hystrix redis高并发(读多写少)下缓存数据库双写误差: 1. 修改操作使用分布式锁(就是修改的时候加锁,一次只能有一个线程修改,可以多线程读),对于读多的场景更有利:推荐(以较少的性能代价换取了绝对的一致) 2. 延迟删除缓存 修改一个key后,删除缓存,为了防止之前有线程读过旧数据然后再次写入,sleep 10毫秒再删除一次,但此步要后台处理,不然可能会大幅降低整体性能. 3. 写直接写入数据库,…