今天,我们要探讨的就是--Tarjan算法. Tarjan算法的主要作用便是求一张无向图中的强连通分量,并且用它缩点,把原本一个杂乱无章的有向图转化为一张DAG(有向无环图),以便解决之后的问题. 首先,我们在原图上跑一遍DFS,然后会发现三种边: 1.正常边:嗯,顾名思义就是连接祖先和儿子节点的边. 2.横叉边:连接到了已经弹出的节点的边(也能叫它小三边). 3.返祖边:从儿子节点连到祖先的边. 那么通过进一步的观察我们可以发现:返祖边可能产生强连通分量,而横叉边不能.(如下图所示) DFS遍…
基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等,那这个点就在一个强连通分量里面,此时从栈中向外取出元素,知道取出的元素与这个点的值相等时结束,我们所有取出的点与这个点在同一个强连通分量里.下面是代码,其实代码里本来不需要id数组记录点属于哪个强连通分量的,因为题目没有做要求,但是为了保留模板完整还是带着了,以供以后复习使用. #include<c…
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarjan算法_LCA - A_Bo的博客 - CSDN博客 Tarjan离线算法求最近公共祖先(LCA) - 初学者 - CSDN博客 最近公共祖先(LCA) - riteme.site Fuzhou University OnlineJudge 1628 P3379 [模板]最近公共祖先(LCA) -…
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而后这个有向图不再联通,我们便称删去的这条边为有向图的桥. 割点:在一个有向图中,如果删去一个点,使这个有向图中剩下的点不在联通,我们便称这个点为有向图的割点. Tarjan算法原理分析: 和上文一样的,我们求出一个dfn数组(进行dfs时遍历的顺序),和一个low数组(以u为根的子树中,能连到dfn…
概念: 在有向图G中,如果两个定点u可以到达v,并且v也可以到达u,那么我们称这两个定点强连通. 如果有向图G的任意两个顶点都是强连通的,那么我们称G是一个强连通图. 一个有向图中的最大强连通子图,称为强连通分量. tarjan的主要思想: 从一个点开始DFS,记录两个数组,dfn[]和low[]. 其中,dfn[i]指的是到达第i个点的时间. low[i]指第i个点直接或间接可到达的点中的最小dfn[j]. low[i]数组的初始值为dfn[i]. 举个例子,如图所示: 假如我们从第一个点开始…
先上代码: #include <iostream> #include <cstring> #include <vector> #include <stack> using namespace std; ][]; ],sccno[],lowlink[]; //sccno[u]:u节点所属于的强连通分量序号 int dfs_clock,scc_cnt,n,m,x,y; //pre[u]:u节点的时间戳 stack<int> S; //lowlink[…
#include<bits/stdc++.h> #define ll long long using namespace std; const int P=1e6; ; ; const int inf=0x3f3f3f3f; struct edge { int f,t,next; ll v; }e[M]; int n,m,tot,all,s,cnt,head[N],dfn[N],low[N],st[N],id[N]; int dindex; bool inst[N]; ll num[N],su…
Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时间戳用DFN数组存储,最早祖先用low数组来存,每次dfs遍历到一个节点u,即让这两个记号等于当前时刻,在后面回溯或者判断的过程中在来更新low,DNF是一定的,因为第一次访问时刻一定.然后遍历u的子节点,也就是跟u相连的点v,依次看子节点的时间戳有没有打上,也就是看他有没有被访问过.\(1\).没…
什么是强连通分量?在这之前先定义一个强连通性(strong connectivity)的概念:有向图中,如果一个顶点s到t有一条路径,t到s也有一条路径,即s与t互相可达,那么我们说s与t是强连通的.那么在有向图中,由互相强连通的顶点构成的分量,称作强连通分量. 一:对于kosaraju算法,这是一个比tarjan较复杂的算法,但是因为一本通上介绍了这种算法,我就找几个题目练习了一下. kosaraju算法:可以求出强连通分量的个数,还可以对分属于不同强连通分量的点进行标记. 算法描述:(1):…
Tarjan求强连通分量的流程在这个博客讲的很清楚,再加上我也没理解透,这里就不写了. 缩点:将同一个连通块内的点视为同一个点. 扔一道模板题:codeVS2822爱在心中 第一问很显然就是求点数大于一的连通块的个数,跑一次tarjan: 第二问脑补一下发现,缩点后,若图中有且仅有一个点出度为0且为爱心天使,则该点为所求的特殊爱心天使: 因为当缩点之后,图中不存在环,若有且仅有一个爱心天使出度为0,那么其他点一定有通向该爱心天使的路径. 若有两个点出度为0,那么他们彼此不被对方所爱. 若没有点出…