首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
大数据开发-Spark-拷问灵魂的5个问题
】的更多相关文章
大数据开发-Spark-拷问灵魂的5个问题
1.Spark计算依赖内存,如果目前只有10g内存,但是需要将500G的文件排序并输出,需要如何操作? ①.把磁盘上的500G数据分割为100块(chunks),每份5GB.(注意,要留一些系统空间!) ②.顺序将每份5GB数据读入内存,使用quick sort算法排序. ③.把排序好的数据(也是5GB)存放回磁盘. ④.循环100次,现在,所有的100个块都已经各自排序了.(剩下的工作就是如何把它们合并排序!) ⑤.从100个块中分别读取5G/100=0.05 G入内存(100input bu…
FusionInsight大数据开发---Spark应用开发
Spark应用开发 要求: 了解Spark基本原理 搭建Spark开发环境 开发Spark应用程序 调试运行Spark应用程序 YARN资源调度,可以和Hadoop集群无缝对接 Spark适用场景大多数现有集群计算框架如MapReduce等基于从稳定存储(文件系统)到稳定存储的非循环数据流,数据重用都是基于磁盘的,执行效率比较低.与传统的MapReduce任务频繁读写磁盘数据相比,基于内存计算的Spark则更适合应用在迭代计算,交互式分析等场景. Spark应用运行流程--关键角色 Client…
大数据开发-Spark Join原理详解
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. Join 是等值 Join 还是不等值以及参与 Join 的 key 是否可以排序等条件来选择最 终的 Join 策略,最后 Spark 会利用选择好的 Join 策略执行最终的计算.当前 Spark 一共支持五种 Join 策略: Broadcast hash join (BHJ) Shuffle…
大数据开发-从cogroup的实现来看join是宽依赖还是窄依赖
前面一篇文章提到大数据开发-Spark Join原理详解,本文从源码角度来看cogroup 的join实现 1.分析下面的代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.get…
大数据开发实战:Spark Streaming流计算开发
1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数据处理方案.这种方案就是Spark.Spark本质上是对Hadoop特别是MapReduce的补充.优化和完善,尤其是数据处理速度.易用性.迭代计算和复杂数据分析等方面. Spark Streaming 作为Spark整体解决方案中实时数据处理部分,本质上仍然是基于Spark的弹性分布式数据集(Re…
【原创干货】大数据Hadoop/Spark开发环境搭建
已经自学了好几个月的大数据了,第一个月里自己通过看书.看视频.网上查资料也把hadoop(1.x.2.x).spark单机.伪分布式.集群都部署了一遍,但经历短暂的兴奋后,还是觉得不得门而入. 只有深入大数据开发才能逐步掌握大数据.而首先要搭开发环境,对于一个像我这样之前只做过plsql开发的人来说,确实走了很多弯路.一开始目标设得很高,直接下源代码编译成jar包进行使用,后来发现其实没什么必要,受到一些非技术因素尤其是天朝特色社会主义网络的影响,sbt基本无法使用,直接下官方编译好的版本就行了…
大数据开发实战:HDFS和MapReduce优缺点分析
一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子项目.实际上,Hadoop中有一个综合性的文件系统抽象,它提供了文件系统实现的各类接口, 而HDFS只是这个抽象文件系统 的一种实现,但HDFS是各种抽象接口中应用最为广泛和最广为人知的一个. HDFS被设计成适合运行在通用和廉价硬件上的分布式文件系统.它和现有的分布式文件系统有很多共同点,但他和其…
大数据开发实战:Stream SQL实时开发一
1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.Flink.Beam等)的底层API上, 通过使用简易通用的的SQL语言构建SQL抽象层,降低实时开发的门槛. 流计算SQL的原理其实很简单,就是在SQL和底层的流计算引擎之间架起一座桥梁---流计算SQL被用户提交,被SQL引擎层翻译为底层的API并在底层的流计算引擎上执行.比如对Storm 来说,…
详解Kafka: 大数据开发最火的核心技术
详解Kafka: 大数据开发最火的核心技术 架构师技术联盟 2019-06-10 09:23:51 本文共3268个字,预计阅读需要9分钟. 广告 大数据时代来临,如果你还不知道Kafka那你就真的out了(快速掌握Kafka请参考文章:如何全方位掌握Kafka核心技术)!据统计,有三分之一的世界财富500强企业正在使用Kafka,包括所有TOP10旅游公司,7家TOP10银行,8家TOP10保险公司,9家TOP10电信公司等等. LinkedIn.Microsoft和Netflix每天都用…
BAT推荐免费下载JAVA转型大数据开发全链路教程(视频+源码)价值19880元
如今随着环境的改变,物联网.AI.大数据.人工智能等,是未来的大趋势,而大数据是这些基石,万物互联,机器学习都是大数据应用场景! 为什么要学习大数据?我们JAVA到底要不要转型大数据? 好比问一个程序员为什么要学编程! 大数据技术是未来科技的必备技能,在外行看来大数据就是噱头,华而不实,对于大数据技术来说"先是看不见,再是看不上,最后是跟不上".做技术的一定要跟上时代,做精当下,看见未来! 大数据,人工智能,可以说绝对是未来十年社会发展的风向标.生存法则变了, 你再不懂这些就彻底晚了!…