Prims算法 - 最小生成树】的更多相关文章

2017-07-26  14:35:49 Prims算法,是一种基于“贪心”的求最小树的算法 ,以每次加入一个邻接边来建立最小树,直到找到N-1个边为止. 规则:以开始时生成树的集合为起始的顶点,然后找出与生成树集合邻接的边中,加权值最小的边来生成树, 为了确定新加入的边不会造成回路,所以每一个新加入的边,只允许有一个顶点在生成树的集合中. 适用:稠密图 用自己的话来讲:Prims算法跟之前的Kruskal算法不大一样,Kruskal算法主要是通过对权值进行从低到高的排序,确定先后加入的边 Pr…
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中.不妨换个思路,为何不一开始就将所有边中权值最小的边取出来搭建二叉树?这里说的最小权值是全局的最小权值,而Prim说的最小权值,是已经访问过的顶点的周围的边中的最小权值,这个范围当然比全部边要小. 于是需要对边按照权值升序排列,由于每次取出的最小权值分布在图的各个地方,一开始各条边可能并不是相连的,…
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图的一棵权值和(所有边的权值相加之和)最小的生成树. 要注意以下几点: 最小生成树首先是一个生成树,所以我们研究的是无环连通分量: 边的权值可能是0也可能是负数 边的权值不一定表示距离,还可以是费用等 加权无向图的实现 之前图的实现都没有考虑权值,而权值存在于边上,所以最好是将"边"这个概念…
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来. 初始时,每个顶点各自属于自己的子集合,共n个子集合. 每一步操作,都会将两个子集合融合成一个,进而减少一个子集合. 结束时,所有的顶点都在同一个子集合里,这个子集合就是最小生成树. 例子: 伪代码: Prim算法: G=(V,E),S是V的真子集,如果u在S中,v在V-S中,且(u,v)是图的一…
题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那…
最小生成树的一个作用,就是求最小花费.要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低.这就需要找到带权的最小生成树. 主要思路:贪心,假设一共有五个点,按道理来讲,应该是先找到图中最小权值的两个点没然后对剩余的点进行遍历.但是也可以任意指定一个点.可以任意指定的原因就是,如果给定的信息可以构成最小生成树的话,那么最小生成树中一定有所有的点,那么这个点也一定在树上,所以…
最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任意节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2)V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程. Prim…
2017-07-26  10:32:07 writer:pprp Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树:并且每次添加的边不能造成生成树有回路,直到找到N-1个边为止: 适用范围:边集比较少的时候,可以考虑用这个方法: 做法:将图形中所有的边的权值,递增排序(快速排序),按从小到大,依次将邻接边加入到生成树中,加入的生成树不能有回路,直到N-1个边: 还用到了并查集: 代码如下: #include <iostream> using namespac…
个人心得:就是最小生成树的运用,还是要理解好每次都是从已搭建好的生成树里面选择与她的补集中最短距离,所以那个book数组的更新 需要好生体会.不过还是有缺陷,算法的复杂度为O(n^2),看介绍说用优先队列加堆会达到O(n*long n),不过很可惜看不懂,太菜了 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小.请计算最小的公路总长度…
最小生成树的方法一般比较常用的就是kruskal和prim算法 一个是按边从小到大加,一个是按点从小到大加,两个方法都是比较常用的,都不是很难... kruskal算法在本文里我就不讲了,本文的重点是讲讲prim算法,之前一直没学过,只是了解了思想,原本以为很难,结果很好理解 prim 即可以用过邻接矩阵又可以用邻接链表,不过邻接链表的时间优化不了多少,但是还是可以优化很多空间的 prim算法是先枚举第一个点,将选好的点加入点集V,没选的点在点集U,然后在U集中找距离V集最近一个点,然后将其加入…