正规方程 Normal Equation】的更多相关文章

正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/51030366)和学习率(详见http://blog.csdn.net/u012328159/article/details/51030961).在线性回归中.为了求得參数 %5Ctheta" alt="">的最优值,一般採用梯度下降和本文将要介绍的正规方程(normal equ…
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 1 % Exercise 1: Linear regression with multiple variables %% Initialization %% ================ Part 1: Featu…
normal equation(正规方程) 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: \[ \frac{\partial}{\partial\theta_j}J\left(\theta\right)=0 \] 假设我们的训练集特征矩阵为 \(X\)(包含了\(x_0=1\))并且我们的训练集结果为向量 \(y\),则利用正规方程解出向量: \[ \theta ={{\left( {X^T} X \right)}^{-1}}{X^T}y \] 梯度下降与正规方程的比较: 梯度下…
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,Normal Equation提供了一种直接得到最佳θ值的公式. 我们知道,求解曲线f(x)=ax^2+bx+c极值的问题,其解法是求导数f'(x),并将其置0,求解出极值点.(因为斜率为0,所以是极值). 而放宽到θ系数矩阵,我们同样可以对每个θ求偏导数,从而得到我们想要的J(θ). 利用內积公式:…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 多元线性回归的模型: #-----------…
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XTX)-1XTy = X-1,(XTX)-1XTy其实就是X的伪逆(Pseudo inverse).这也对应着Xθ = y ,θ = X-1y 考虑特殊情况 XTX 不可逆 解决办法: 1)考虑是否有冗余的特征,例如特征中有平方米,还有平方厘米,这两个特征就是冗余的,解决办法是去掉冗余 2)再有就是n…
I was going through the Coursera "Machine Learning" course, and in the section on multivariate linear regression something caught my eye. Andrew Ng presented the Normal Equation as an analytical solution to the linear regression problem with a l…
引言: Normal Equation 是最基础的最小二乘方法.在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习. Notations: RSS(Residual Sum Squared error):残差平方和 β:参数列向量 X:N×p 矩阵,每行是输入的样本向量 y:标签列向量,即目标列向量 Method 1. 向量投影在特征纬度(Vector Projection onto the Column Space…
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点:   前面我们通过Gradient Descent的方法进行了线性回归,但是梯度下降有如下特点: (1)需要预先选定Learning rate: (2)需要多次iteration: (3)需要Feature Scaling:   因此可能会比较麻烦,这里介绍一种适用于Feature数量较少时使用的方法:Normal Equation:   当F…
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta\)呢? 下面我们看看Ng 4-6 中的房价预测例子: 其中\( m = 4, n = 4 \).在机器学习中,线性回归一般都增加额外的一列特征\(x_0 = 1\),其中我们特征矩阵\(X\)和值向量\(y\)分别为: \begin{bmatrix}1 & 2104 & 5 & 1…
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XTX)-1XTy = X-1,(XTX)-1XTy其实就是X的伪逆(Pseudo inverse).这也对应着Xθ = y ,θ = X-1y 考虑特殊情况 XTX 不可逆 解决办法: 1)考虑是否有冗余的特征,例如特征中有平方米,还有平方厘米,这两个特征就是冗余的,解决办法是去掉冗余 2)再有就是n…
Normal Equation Note: [8:00 to 8:44 - The design matrix X (in the bottom right side of the slide) given in the example should have elements x with subscript 1 and superscripts varying from 1 to m because for all m training sets there are only 2 featu…
Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其它的问题如classification problem或者feature number太大的情况下(计算量会很大)则不能使用normal equation,而应使用gradient descent来求解. (由求导的过程推导而得) 这种方法是对cost function(J(θ),θ为n+1维向量(…
Normal Equation算法及其简洁,仅需一步即可计算出theta的取值,实现如下: function [theta] = normalEqn(X, y) theta = zeros(size(X, 2), 1); theta = inv(X'*X)*X'*y; end 和梯度下降算法一样,我们预估1650square feet&3 bedrooms的房价: x_e=[1650,3]; x_e=[ones(size(x_e),1) x_e]; price = x_e*theta; outp…
问题描述:m examples : (x(1),y(1)), (x(2),y(2)),..., (x(m),y(m)) and n features; 计算方法:θ = (XTX)-1XTy; 计算过程: (1) x(i) = [ x0(i)  x1(i) ...  xn(i) ] 为列矩阵: (2)design matrix: X = [ (x(1))T (x(2))T (x(3))T ... (x(n))T ] (3)compute with the format θ = (XTX)-1XT…
到目前为止,我们都在使用梯度下降算法,但是对于某些线性回归问题,正规方程方法是更好的解决方案.如: 即: 运用正规方程方法求解参数: 注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的. 总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数…
theta=(Xt*X)^-1 Xt*y x is feature matrix y is expectation…
Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.html Exercise 2:Logistic Regression---实现一个逻辑回归 问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学. 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对这部分知识进行总结,另一方面也希望能够对其他人有所帮助.由于内容比较多希望能够坚持写完. 本篇博客主要讲解线性最小二乘问题,主要包括以下内容: 最小二乘问题的定义 正规方程求解 乔姆斯基分解法求解 QR分解法求解 奇异值分解法求解 齐次方程的最小二乘 一. 问题的定义 最小二乘问题通常可以表述为,通…
TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统的学习一遍.在本篇文章中主要介绍TF的基础知识... 创建并运行图 首先创建 两个变量 import tensorflow as tf reset_graph() x = tf.Variable(3, name="x") y = tf.Variable(4, name="y&qu…
模型 假定有i组输入输出数据.输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训练集(training set). 假定\(X\)有j个特征,则可以用集合\({x^i_1,x^i_2,\dots ,x^i_j}\)表示. 为了描述模型,要建立假设方程(hypothesis function) : $ h:X\to Y$. \(h_\theta (x) = \theta_0 +…
# ML week 1 2 一.关于machine learning的名词 学习 从无数数据提供的E:experience中找到一个函数使得得到T:task后能够得到P:prediction 监督学习 experience中的数据都是有t和p的,计算机通过t和p得到函数 1.分类 p是明确的类 如:书有小说,教科书,故事书 2.回归 p是线性的,如:书的价格 非监督学习 experience中的数据只有t没有p,计算机仅通过t得到可以分成不同类的p函数 1.聚类 将产生的结果分成不同的集合,每个…
问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录取) 因此,需要根据trainging set 训练出一个classification model.然后,拿着这个classification model 来评估新学生能否入学. 训练数据的成绩样例如下:第一列表示第一次考试成绩,第二列表示第二次考试成绩,第三列表示入学结果(0--不能入学…
目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输出值. 分类的含义: 分类就是预测离散的输出值, 比如男生为1, 女生为0(0/1离散输出问题). 机器学习中往往会有一个假设(hypothesis), 本质上来讲\(h\)代表学习算法的解决方案或函数. \(h\)可以理解为是我们预先选定的规则或者函数的形式,我们需要不停地得到对应的参数. \(h…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统的学习一遍.在本篇文章中主要介绍TF的基础知识... 创建并运行图 首先创建 两个变量 import tensorflow as tf reset_graph() x = tf.Variable(3, name="x") y = tf.Variable(4, name="y&qu…
四.多变量线性回归(Linear Regression with Multiple Variables) 4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践1-特征缩放 4.4 梯度下降法实践2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性(可选) 五.Octave教程(Octave Tutorial) 5.1 基本操作 5.2 移动数据 5.3 计算数据 5.4 绘图数据 5.5 控制语句:for,while,if语句 5.6 向量化 5.7 工…
1.输出: 线性回归输出是连续的.具体的值(如具体房价123万元) 回归 逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题 分类 2.假设函数 线性回归: θ数量与x的维度相同.x是向量,表示一条训练数据 逻辑回归:增加了sigmoid函数 逻辑斯蒂回归是针对线性可分问题的一种易于实现而且性能优异的分类模型,是使用最为广泛的分类模型之一. sigmoid函数来由 假设某件事发生的概率为p,那么这件事不发生的概率为(1-p),我们称p/(1-p)为这件…
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gradient Descent for Multiple Variables4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice…