ZOJ 3201 树形dp+背包(简单题)】的更多相关文章

#include<cstdio> #include<vector> #include<cstring> #include<iostream> using namespace std; ; vector<int>a[MAXN]; int n,m,v[MAXN],vis[MAXN],dp[MAXN][MAXN]; void dfs(int root) { dp[root][] = v[root]; vis[root] = ; int i, len =…
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3626 题目大意:树中取点.每过一条边有一定cost,且最后要回到起点.给定预算m,问最大价值. 解题思路: 首先要注意这题要回到起点,由于树的特殊结构(每个结点只有一个父亲)也就是说,要回到开头, 开销是2倍.所以首先m/=2. 然后就是树形背包的求解,这题的cost在边,所以for写法变成如下: for(m....j....0)     for(0....k…
题意:给出一个n个节点的树形图,统计{A,B,C}的数量,其中ABC分别是树上三个不同的节点,并且这三个节点不能被一条路径覆盖 分析:对于下图 进行dfs深搜统计,num[u]统计回溯到当前节点u,并以u为根节点的子树节点个数,当回溯点到<2,4>不存在,当回溯到<2,5>时可以从{4}中和{5}中分别选择一个然后在选择4到5路径之外的其他任意一点此时ans+=(num[2]-1)*num[5]*(8-num[2]-num[5])=5;当回溯到<2,6>的时候,num[…
这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过程中,有点难表示转移 后来看了下大神的做法才知道其实可以用背包来模拟 树枝的去留,其实真的是个背包诶,每个子树枝就相当于物品,他占用了多少树枝量,带来多少的收益,就是用背包嘛,于是用树形DP+背包就可以做了 #include <iostream> #include <cstdio> #…
转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963#overview 树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AVL树,线段树.SPLAY树,后缀树等等.. 枚举那么多种数据结构只是想说树方面的内…
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 解析 一道很简单的树形dp,然而我调了半天都没调出来,就是菜. 容易看出状态\(dp[x][i]\)表示以\(…
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define ll long…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1011 题目大意:树上取点,先取父亲,再取儿子.每个点,权为w,花费为cost,给定m消费总额,求最大权和. 解题思路: 树形背包模板题.首先建一个无向图. 每个点的cost=(bug[root]+19)/20,即虫子数不满20也要派一个人. 用dp[i][j]表示以i为根的子树中,花费为j的最大权和. 转移方程:dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[t][k]),…
题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值. 那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\).\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举. 那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,…
题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\(f[i][j][k]\)时,我们先枚举合成了x个\(i\)号物品,计算出此时的花费各种金币下最大收益 然后就可以枚举\(j \le x\)和\(k\),更新\(f[i][j][k]\)了 计算最大收益,就把第\(l\)个子树的\(f[s][w * x][v]\)看做第\(l\)个物品的第\(v\)种…