从spark架构中透视job】的更多相关文章

本博文的主要内容如下: 1.通过案例观察Spark架构 2.手动绘制Spark内部架构 3.Spark Job的逻辑视图解析 4.Spark Job的物理视图解析 1.通过案例观察Spark架构 spark-shell中,默认情况下,没有任何的Job. 从Master角度讲:   1.管理CPU.MEM等资源(也考虑网络) 2.接收Driver端提交作业的请求,并为其分配资源(APPid等) 注:spark默认是粗粒度,即spark作业提交的时候就会为我们作业分配资源,后续运行的过程中一般使用已…
本博文的主要内容如下:  1.通过案例观察Spark架构 2.手动绘制Spark内部架构 3.Spark Job的逻辑视图解析 4.Spark Job的物理视图解析 1.通过案例观察Spark架构 spark-shell中,默认情况下,没有任何的Job. 从Master角度讲:   1.管理CPU.MEM等资源(也考虑网络) 2.接收Driver端提交作业的请求,并为其分配资源(APPid等) 注:spark默认是粗粒度,即spark作业提交的时候就会为我们作业分配资源,后续运行的过程中一般使用…
Spark架构 Spark架构采用了分布式计算中的Master-Slave模型.集群中运行Master进程的节点称为Master,同样,集群中含有Worker进程的节点为Slave.Master负责控制整个集群的运行:Worker节点相当于分布式系统中的计算节点,它接收Master节点指令并返回计算进程到Master:Executor负责任务的执行:Client是用户提交应用的客户端:Driver负责协调提交后的分布式应用. 在Spark应用的执行过程中,Driver和Worker是相互对应的.…
把传统的基于sql的企业信息中心迁移到spark 架构应该考虑的几点 * 理由: 赶时髦,  这还不够大条么? > 数据都设计为NO-SQL模式, 只有需要search的才建立2级索引. 就可以了,未必需要rdbms结构. 搜索,和报表可以用spark sql 来进行query. 而且spark提供了内置的mlib和graphX 一般的报表都够用了. > DBA平常有做备份什么的. 那么切换到spark系统后,如何对数据进行备份? > 有没有异地备份的功能?…
在大数据领域,只有深挖数据科学领域,走在学术前沿,才能在底层算法和模型方面走在前面,从而占据领先地位. Spark的这种学术基因,使得它从一开始就在大数据领域建立了一定优势.无论是性能,还是方案的统一性,对比传统的Hadoop,优势都非常明显.Spark提供的基于RDD的一体化解决方案,将MapReduce.Streaming.SQL.Machine Learning.Graph Processing等模型统一到一个平台下,并以一致的API公开,并提供相同的部署方案,使得Spark的工程应用领域…
本文转之Pivotal的一个工程师的博客.觉得极好.   作者本人经常在StackOverflow上回答一个关系Spark架构的问题,发现整个互联网都没有一篇文章能对Spark总体架构进行很好的描述,作者可怜我们这些菜鸟,写了这篇文章,太感动了.本文读者需要一定的Spark的基础知识,至少了解Spark的RDD和DAG. 上图引入了很多术语:"Executor","Task","Cache","Worker Node"等等,当…
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所…
Spark是时下非常热门的大数据计算框架,以其卓越的性能优势.独特的架构.易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用.与Hadoop.HBase生态圈的众多项目一样,Spark的运行离不开JVM的支持.由于Spark立足于内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制(GC).并且同时,它也支持兼容批处理和流式处理,对于程序吞吐量和延迟都有较高要求,因此GC参数的调优在Spark应用实践中显得尤为重要.本文主要讲述如何针对Spark应用程序配置JV…
一.Spark的产生背景起源 1.spark特点 1.1轻量级快速处理 Saprk允许传统的hadoop集群中的应用程序在内存中已100倍的速度运行即使在磁盘上也比传统的hadoop快10倍,Spark通过减少对磁盘的io达到性能上的提升,他将中间处理的数据放到内存中,spark使用了rdd(resilient distributed datasets)数据抽象 这允许他在内存中存储数据,所以减少了运行时间 1.2 易于使用 spark支持多种语言.Spark允许java,scala pytho…
Spark架构    为了更好地理解调度,我们先来鸟瞰一下集群模式下的Spark程序运行架构图. 1. Driver Program        用户编写的Spark程序称为Driver Program.每个Driver程序包含一个代表集群环境的SparkContext对象,程序的执行从Driver程序开始,所有操作执行结束后回到Driver程序中,在Driver程序中结束.如果你是用spark shell,那么当你启动 Spark shell的时候,系统后台自启了一个 Spark 驱动器程序…