1. 机器学习更多应用举例: 人脸识别   2. 机器学习就业需求:      LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才      http://blog.linkedin.com/2014/12/17/the-25-hottest-skills-that-got-people-hired-in-2014/   3.  深度学习(Deep Learning)   3.1 什么是深度学习?             深度学习是基于机器学习延伸出来的一个新的领域,由以人…
参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 1. 课程介绍 2. 机器学习 (Machine Learning, ML) 2.1 概念:多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能. 2.2 学科定位:人工智能(Artificial Intelligence, AI)的…
继续回到神经网络章节,上次只对模型进行了简要的介绍,以及做了一个Hello World的练习,这节主要是对当我们结果不好时具体该去做些什么呢?本节就总结一些在深度学习中一些基本的解决问题的办法. 为什么说是"基本的办法"?因为这一部分主要是比较基础的内容,是一些常用的,比较容易理解的,不过多的去讨论各式各样的网络结构,只是介绍这些方法都做了些什么. 对于深度学习的探索后面会再开专题,专门去学习和讨论(突然发现要学的东西真的很多~) 深度学习技巧 0.不要总是让"过拟合&quo…
在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常将模型拟合在训练集上,以便对未被训练的数据进行预测. 在统计学和机器学习领域中,我们通常把数据分成两个子集:训练数据和测试数据,并且把模型拟合到训练数据上,以便对测试数据进行预测.当做到这一点时,可能会发生两种情况:模型的过度拟合或欠拟合.我们不希望出现这两种情况,因为这会影响模型的可预测性.我们有…
参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ   0. 机器学习中分类和预测算法的评估:   准确率 速度 强壮行 可规模性 可解释性       1. 什么是决策树/判定树(decision tree)?            判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布.树的最顶层是根结点.         2.  机器学习…
参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分类,回归 概念学习:人类学习概念:鸟,车,计算机 定义:概念学习是指从有关某个布尔函数的输入输出训练样例中推断出该布尔函数 例子:学习 "享受运动" 这一概念: 小明进行水上运动,是否享受运动取决于很多因素 样例 天气 温度 湿度 风力 水温 预报 享受运动 1 晴 暖 普通 强 暖 一样…
[保持在百度网盘中的, 可以在观看,嘿嘿 内容有点多,要想下载, 回复后就可以查看下载地址,资源收集不易,请好好珍惜] 下载地址:http://www.fu83.cc/ 感觉文章好,可以小手一抖 -------------------------说正文------------------------ 第一阶段:python基础准备: Web前端开发之HTML+CSS基础入门: 课程章节 1.课程介绍 2.html的语法 3.html的基本结构 4.html的文档设置标记上(格式标记) 5.htm…
  大数据文摘作品,转载要求见文末 编译团队|姚佳灵 裴迅 简介 ▼ 深度学习,是人工智能领域的一个突出的话题,被众人关注已经有相当长的一段时间了.它备受关注是因为在计算机视觉(Computer Vision)和游戏(Alpha GO)等领域有超越人类能力的突破 .自上一次调查(查看调查:https://www.analyticsvidhya.com/blog/2014/06/deep-learning-attention/)以来,对于深度学习的关注又出现了大幅增加的趋势. 下图是谷歌趋势向我们…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 导入必要的包 import numpy as np import matplotlib.pyplot as plt im…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/261 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n<深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末.…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
1.简明Python教程 2.Python计算机视觉编程 3.机器学习实践 4.吴恩达机器学习 5.李飞飞深度学习与计算机视觉…
介绍 本系列教程基本就是搬运<Python机器学习基础教程>里面的实例. Github仓库 使用 jupyternote book 是一个很好的快速构建代码的选择,本系列教程都能在我的Github仓库找到对应的 jupyter notebook . Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程入口 Python机器学习基础教程-第1章-鸢尾花的例子KNN Python机器学习…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣.她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七).(八)都发布的比这个早,因为这个系列的博客是之前早就写好的,不过会抽空在后台修改,感觉自己看不出错误(当然因为水平有限肯定还是会有些错误)了之后再发出来.后面还有SVM.聚类.tree-based和boosting,但现在的情况是前八篇结束后,本系列无限期停更-…
我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一…
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
一.Matplotlib基础知识 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形. 通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. 1.Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线…
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了“Python机器学习库”,不过总感觉缺少点什么.最近流行一个词,全栈工程师(fu…
使用的工具:NumPy和Matplotlib NumPy是全书最基础的Python编程库.除了提供一些高级的数学运算机制以外,还具备非常高效的向量和矩阵运算功能.这些对于机器学习的计算任务是尤为重要的.因为不论是数据的特征表示也好,还是参数的批量设计也好,都离不开更加快捷的矩阵和向量计算.而NumPy更加突出的是它内部独到的设计,使得处理这些矩阵和向量计算比起一般程序员自行编写,甚至是Python自带程序库的运行效率都要高出许多. Matplotlib是一款Python编程环境下免费试用的绘图工…
CentOS7服务器上部署深度/机器学习环境推荐首选anaconda3,亲测~~ 因为可以创建不同的环境版本或虚拟环境 CentOS7服务器安装anaconda3后,CentOS7服务器开启后自动将anaconda3自身的root(或base)环境开启.用Xshell打开CentOS7服务器后,可以看见 (base) WARNING! The remote SSH server rejected X11 forwarding request.Last login: Tue Mar 12 22:1…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
转载:http://python.jobbole.com/84326/ 偶然看到的这篇文章,觉得对我挺有引导作用的.特此跟大家分享一下. 为了理解和应用机器学习技术,你需要学习 Python 或者 R.这两者都是与 C.Java.PHP 相类似的编程语言.但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得简单一些.相对于R 只用于处理数据,使用例如机器学习.统计算法和漂亮的绘图分析数据, Pthon 的优势在于它适用于许多其他的问题.因为 Python 拥有更广阔…
如何通过Python入门机器学习 我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Pyt…