数据挖掘中有一个很重要的应用,就是Frequent Pattern挖掘,翻译成中文就是频繁模式挖掘.这篇博客就想谈谈频繁模式挖掘相关的一些算法. 定义 何谓频繁模式挖掘呢?所谓频繁模式指的是在样本数据集中频繁出现的模式.举个例子,比如在超市的交易系统中,记载了很多次交易,每一次交易的信息包括用户购买的商品清单.如果超市主管是个有心人的话,他会发现尿不湿,啤酒这两样商品在许多用户的购物清单上都出现了,而且频率非常高.尿不湿,啤酒同时出现在一张购物单上就可以称之为一种频繁模式,这样的发掘就可以称之为…
Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-patterntree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequentitems…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达 到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这 张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作…
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效的一种. 支持度和置信度 严格地说Apriori和FP-Tree都是寻找频繁项集的算法,频繁项集就是所谓的"支持度"比较高的项集,下面解释一下支持度和置信度的概念. 设事务数据库为: A E F G A F G A B E F G E F G 则{A,F,G}的支持度数为3,支持度为3/4…
频繁模式挖掘(Frequent Pattern Mining): 频繁项集挖掘是通常是大规模数据分析的第一步,多年以来它都是数据挖掘领域的活跃研究主题.建议用户参考维基百科的association rule learning 了解更多信息.MLlib支持了一个并行的FP-growth,FP-growth是很受欢迎的频繁项集挖掘算法.   FP-growth: FP-growth算法在论文Han et al., Mining frequent patterns without candidate…
频繁项集挖掘的应用多出现于购物篮分析,现介绍两种频繁项集的挖掘算法Aprior和FPGrowth,用以发现购物篮中出现频率较高的购物组合. 基础知识 项:“属性-值”对.比如啤酒2罐.  项集:项的集合.比如{啤酒2罐,…,尿布5片}  K项集:项集中的每个项都有K个项.  支持度:项集在训练元组中同时出现的次数(或者比例).  置信度:A−>BA−>B的置信度,表示P(B|A)P(B|A),是个条件概率.(置信度大于用户规定的最小置信度的规则是可信的)  兴趣度:A−>BA−>B…
转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association analysis)的方法,这种方法,可以从下表可以提取出,{尿布}->牛奶. 两个关键问题:1大型数据计算量很大.2发现的某种模式可能是虚假,偶然发生的. 2问题定义 把数据可以转换为如下表的二元表示,非二元不在本文讨论范围 项集 项集的支持度计数: 关联规则: 我们要发现,满足最小支持度与最小置信度…
[算法大致描述] Aprior算法主要有两个操作,扫描数据库+统计.计算每一阶频繁项集都要扫描一次数据库并且统计出满足支持度的n阶项集. [算法主要步骤] 一.频繁一项集 算法开始第一步,通过扫描数据库,统计出每条记录中出现的每一个单独项并计数,数据库扫描完成,统计结束,根据支持度,选出满足条件的频繁一项集 L1. 二.连接 用 Lk-1自连接得到Ck. 方法,如果Lk-1中的两个元素的前K-2项都相同,只有最后一项不同,则自连接得到Ck中的一个元素.例如L3{(12,13,14),(12,13…