首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【强化学习】DQN 算法改进
】的更多相关文章
【强化学习】DQN 算法改进
DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法.主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现.下面给出公式,并定义一个新的变量: \[ q(s_t, a_t)=v(s_t)+A(s_t, a_t) \] 也就是说,基于状态和行动的值函数 \(q\) 可以分解成基于状态的值函数 \(v\) 和优势函数(Advantage Function)\(A\) .由于存在: \[ E_{a_{t}}[q(s_t,…
强化学习Q-Learning算法详解
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share [强化学习]Q-Learning详解1.算法思想QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈…
强化学习-Q-Learning算法
1. 前言 Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计:Q-Learning算法没有遵循交互序列,而是在当前时刻选择了使价值最大的行动. 2. Q-Learning Q-Learning算法在计算当前时刻的行动-状态价值\(q_t(s_t,a_t)\)时选择了当前状态使价值最大的行动\(max_aq_{t-1}(s_{t})\). Q-Learning的迭代公式在SARAS的基础上进行了一些修改…
强化学习——Q-learning算法
假设有这样的房间 如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示: 这就是房间对应的图.我们首先将agent(机器人)处于任何一个位置,让他自己走动,直到走到5房间,表示成功.为了能够走出去,我们将每个节点之间设置一定的权重,能够直接到达5的边设置为100,其他不能的设置为0,这样网络的图为: Qlearning中,最重要的就是“状态”和“动作”,状态表示处于图中的哪个节点,比如2节点,3节点等等,而动作则表示从一个节点到另一个节点的操作. 首先…
强化学习基础算法入门 【PPT】
该部分内容来自于定期的小组讨论,源于师弟的汇报. ==============================================…
强化学习-MDP(马尔可夫决策过程)算法原理
1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框架,强化学习的交互流程可以很好地以概率论的形式表示出来,解决强化学习问题的关键定理也可以依此表示出来. MDP(马尔可夫决策过程)包含以下三层含义: "马尔可夫"表示了状态间的依赖性.当前状态的取值只和前一个状态产生依赖,不和更早的状态产生联系.虽然这个条件在有些问题上有些理想,但是由于它…
(转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀 摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
Deep Learning专栏--强化学习之MDP、Bellman方程(1)
本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David Silver的课程的图,可以很清楚的看到整个交互过程.这就是人与环境交互的一种模型化表示,在每个时间点,大脑agent会从可以选择的动作集合A中选择一个动作$a_t$执行.环境则根据agent的动作给agent反馈一个reward $r_t$,同时agent进入一个新的状态. 根据上图的流程,任务…
深度学习-强化学习(RL)概述笔记
强化学习(Reinforcement Learning)简介 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为. 它主要包含四个元素,环境状态,行动,策略,奖励, 强化学习的目标就是获得最多的累计奖励.RL考虑的是智能体(Agent)与环境(Environment)的交互问题,其中的agent可以理解为学习的主体,它一般是咱们设计的强…
强化学习(八)价值函数的近似表示与Deep Q-Learning
在强化学习系列的前七篇里,我们主要讨论的都是规模比较小的强化学习问题求解算法.今天开始我们步入深度强化学习.这一篇关注于价值函数的近似表示和Deep Q-Learning算法. Deep Q-Learning这一篇对应Sutton书的第11章部分和UCL强化学习课程的第六讲. 1. 为何需要价值函数的近似表示 在之前讲到了强化学习求解方法,无论是动态规划DP,蒙特卡罗方法MC,还是时序差分TD,使用的状态都是离散的有限个状态集合$\mathbb{S}$.此时问题的规模比较小,比较容易求解.但是假…