终于有人说清楚了--XGBoost算法】的更多相关文章

1. 什么是XGBoost XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩. 说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree).因为XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted.包括前面说过,两者都是boosting方法. 关于GBDT,这…
终于有人把云计算.大数据和人工智能讲明白了! https://mp.weixin.qq.com/s/MqBP0xziJO-lPm23Bjjh9w 很不错的文章把几个概念讲明白了...图片拷不过来...看原文 终于有人把云计算.大数据和人工智能讲明白了! 2018-03-29 刘超 51CTO官微 本文转载自刘超的通俗云计算微信公众号 今天跟大家讲讲云计算.大数据和人工智能.这三个词现在非常火,并且它们之间好像互相有关系. 一般谈云计算的时候会提到大数据.谈人工智能的时候会提大数据.谈人工智能的时…
学习内容: CART树 算法原理 损失函数 分裂结点算法 正则化 对缺失值处理 优缺点 应用场景 sklearn参数 转自:https://zhuanlan.zhihu.com/p/58221959 CART树 算法分类与回归树的英文是Classfication And Regression Tree,缩写为CART.CART算法采用二分递归分割的技术将当前样本集分为两个子样本集,使得生成的每个非叶子节点都有两个分支.非叶子节点的特征取值为True和False,左分支取值为True,右分支取值为…
终于有人把O2O.C2C.B2B.B2C的区别讲透了! 一.O2O.C2C.B2B.B2C的区别在哪里? O2O是online to offline分为四种运营模式: 1.online to offline是线上交易到线下消费体验 2.offline to online是线下营销到线上交易 3.offline to online to offline是线下营销到线上交易再到线下消费体验 4.online to offline to online是线上交易或营销到线下消费体验再到线上消费体验 比如…
学习背景 最近想要学习和实现一下XGBoost算法,原因是最近对项目有些想法,准备做个回归预测.作为当下比较火的回归预测算法,准备直接套用试试效果. 一.基础知识 (1)泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.具有局部有效性. 基本形式如下: 由以上的基本形式可知泰勒公式的迭代形式为: 以上这个迭代形式是针对二阶泰勒展开,你也可以进行更多阶的泰勒展开. (2)梯度下降法 在机器学习算法中,我们的目标是最小化损失函数L(theta), 结合泰勒展开公式,我们可以得到如下的公…
一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表现对训练样本分布进行调整,使得先前弱学习器做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一个弱学习器.如此反复学习 ,得到一系列的弱学习器,然后 组合这些弱学习器,构成一个强学习器.提升方法生成的弱学习器之间存在强依赖关系,必须串行生成一系列的弱学习器.目前提升方法主要有 Ad…
前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器.而所用到的树模型则是CART回归树模型. Xgboost是在GBDT的基础上进行改进,使之更强大,适用于更大范围. Xgboost一般和sklearn一起使用,但是由于sklearn中没有集成Xgboost,所以才需要单独下载安装. 2,Xgboost的优点…
xgboost算法最近真是越来越火,趁着这个浪头,我们在最近一次的精准营销活动中,也使用了xgboost算法对某产品签约行为进行预测和营销,取得了不错的效果.说到xgboost,不得不说它的两大优势,一是准确率高,这次营销模型的AUC达到了94%:二是训练速度快,在几十万样本集,几十个特征的情况下,1分钟就可以训练完毕.到底是什么原因使得这门武功又快又准?下面就来简单分析一下. Xgboost的全称是Extreme Gradient Boosting,它是由华盛顿大学的陈天奇于2014年所创,由…
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这时候就没法用信息增益.信息增益率.基尼系数来判定树的节点分裂了,那么回归树采用新的方式是预测误差,常用的有均方误差.对数误差等(损失函数).而且节点不再是类别,而是数值(预测值),划分到叶子后的节点预测值有不同的计算方法,有的是节点内样本均值,有的是最优化算出来的比如Xgboost. XGBoost…
标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ 大家如果感觉格式看着别扭的话,也可以去我的简书里看,这里面markdown的编辑效果不错 1.摘要 xgboost 是个很棒的算法,基本上遇到分类问题,都会先拿xgboost跑一跑,因为它的效果是很好的.此算法源自陈天奇大佬,它的原理我就不多说了,可以去看大神的论文. 本文主要介绍xgboost算…
一.基础知识 (1)泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.具有局部有效性. 基本形式如下: 由以上的基本形式可知泰勒公式的迭代形式为: 以上这个迭代形式是针对二阶泰勒展开,你也可以进行更多阶的泰勒展开. (2)梯度下降法 在机器学习算法中,我们的目标是最小化损失函数L(theta), 结合泰勒展开公式,我们可以得到如下的公式: 为什么这里的, 我觉得是因为这样它和前面的相乘之后,只要a取正值,那么他的变化值就一定是一个负数,换句话,这样就能够确保他的损失一定是减少的.…
在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲.因此讨论的时候,我会重点分析和GBDT不同的地方. 本文主要参考了XGBoost的论文和陈天奇的PPT. 1. 从GBDT到XGBoost 作为GBDT的高效实现,XGBoost是一个上限特别高的算法,因此在算法竞赛中比较受欢迎.简单来说,对比原算法GBDT,XGBoost主要从下面三个方面做了优…
目录 XgBoost算法 一.XgBoost算法学习目标 二.XgBoost算法详解 2.1 XgBoost算法参数 2.2 XgBoost算法目标函数 2.3 XgBoost算法正则化项 2.4 XgBoost算法最小化目标函数 2.5 XgBoost算法举例 三.XgBoost算法优缺点 3.1 优点 3.2 缺点 四.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen…
python平台下实现xgboost算法及输出的解释 1. 问题描述 ​ 近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, 但对leaf value的值一知半解; 同时, 也遇到过使用xgboost 内置的predict 对测试集进行打分预测, 发现若干样本集的输出分值是一样的. 这个问题该怎么解释呢? 通过翻阅Stack Overflow 上的相关问题, 以及搜索到的github上的issue回答, 应该算初步对这个问…
终于有人把Elasticsearch原理讲透了! http://developer.51cto.com/art/201904/594615.htm 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 作者:channingbreeze来源:互联网侦察|2019-04-08 12:14 收藏 分享 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 随着央视诗词大会的热播,小史开始对诗词感兴…
xgboost有一篇博客写的很清楚,但是现在网址已经失效了,之前转载过,可以搜索XGBoost 与 Boosted Tree. 现在参照这篇,自己对它进行一个总结. xgboost是GBDT的后继算法,也是采用boost算法的cart 树集合. 一.基学习器:分类和回归树(CART) cart树既可以 进行分类,也可以进行回归,但是两种情况下,采用的切分变量选择方式不同. CART在进行回归的时候,选择最优切分变量和切分点采用的是如下的标准 其中,c1 和c2满足下式,即为该段变量取值的均值 C…
知识点 """ xgboost:是一种提升算法,串行的决策树 过程: 第一棵树:目标值:1000 ,预测值:950 第二颗树:目标值:1000-950=50(残差作为输入) 预测值:30 第三颗树:目标值:50-30=20(残差作为输入) 预测值:18 最终的目标值:三棵树的预测值相加,即950+30+18 xgboost算法开发过程: 1.数据预处理和数据清洗 2.数据归一化或标准化 3.构建xgboost所需的矩阵,dtrain = xgb.DMatrix(train_x…
终于有人把Elasticsearch原理讲透了! 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 来源:互联网侦察 | 2019-04-08 12:14  转自 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 随着央视诗词大会的热播,小史开始对诗词感兴趣,最喜欢的就是飞花令的环节 但是由于小史很久没有背过诗词了,飞一个字很难说出一句,很多之前很熟悉的诗句也想不起来. 倒排索引 吕老…
最近学习hadoop以及生态,顺便看到了这篇文章,总结的很到位,转载下. 我今天要讲这三个话题,一个是云计算,一个大数据,一个人工智能,我为什么要讲这三个东西呢?因为这三个东西现在非常非常的火,它们之间好像互相有关系,一般谈云计算的时候也会提到大数据,谈人工智能的时候也会提大数据,谈人工智能的时候也会提云计算.所以说感觉他们又相辅相成不可分割,如果是非技术的人员来讲可能比较难理解说这三个之间的相互关系,所以有必要解释一下. 一.云计算最初是实现资源管理的灵活性 我们首先来说云计算,云计算最初的目…
一个执着于技术的公众号 我今天要讲这三个话题,一个是云计算,一个大数据,一个人工智能,我为什么要讲这三个东西呢?因为这三个东西现在非常非常的火,它们之间好像互相有关系,一般谈云计算的时候也会提到大数据,谈人工智能的时候也会提大数据,谈人工智能的时候也会提云计算.所以说感觉他们又相辅相成不可分割,如果是非技术的人员来讲可能比较难理解说这三个之间的相互关系,所以有必要解释一下. / 云计算最初的目标 / 我们首先来说云计算.云计算最初的目标是对资源的管理,管理的主要是计算资源.网络资源.存储资源三个…
GBDT 以多分类问题为例介绍GBDT的算法,针对多分类问题,每次迭代都需要生成K个树(K为分类的个数),记为\(F_{mk}(x)\),其中m为迭代次数,k为分类. 针对每个训练样本,使用的损失函数通常为\[L(y_i, F_{m1}(x_i), ..., F_{mK}(x_i))=-\sum_{k=1}^{K}I({y_i}=k)ln[p_{mk}(x_i)]=-\sum_{k=1}^{K}I({y_i}=k)ln(\frac{e^{F_{mk}(x_i)}}{\sum_{l=1}^{K}e…
最近因为实习的缘故,所以开始复习各种算法推导~~~就先拿这个xgboost练练手吧. (参考原作者ppt 链接:https://pan.baidu.com/s/1MN2eR-4BMY-jA5SIm6WCGg提取码:bt5s ) 1.xgboost的原理 首先值得说明的是,xgboost是gbdt的升级版,有兴趣的话可以先看看gbdt的推导.xgboost同样是构造一棵棵树来拟合残差,但不同之处在于(1)gbdt使用一阶导,xgboost使用二阶导.(2)xgboost在loss中包括模型复杂度,…
之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 首先说一下,这里可能会牵扯到一些 Spring Cloud 的原理,如果有不太清楚的同学,可以参考之前的文章:<拜托,面试请不要再问我Spring Cloud底层原理!>. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电…
1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本思路 提升方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当(按照一定权重)的综合(例如线性组合加法模型)所得出的判断,要比其中任何一个专家单独的判断好 历史上,Kearns和Valiant首先提出了“强可学习(strongly learnable)”和“弱可学习(weekly l…
目录 1.基本知识点简介 2.XGBoost提升树算法 2.1 XGBoost原理 2.2 XGBoost中损失函数的泰勒展开 2.3 XGBoost中正则化项的选定 2.4 最终的目标损失函数及其最优解的表达形式 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaBoost提升学习方法,另一种是GBDT梯度提升树. 传统的AdaBoost算法:利用前一轮迭代弱学习器的误差来更新训练集的权重,一轮轮迭代下去. 梯度提升树GBDT:也是通过迭代的算法,使用前向分布…
一.概念 XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升,经常被用在一些比赛中,其效果显著.它是大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包.XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中. 1.回归树与决策树  事实上,分类与回归是一个型号的东西,只不过分类的结果是离散值,回归是连续的,本质是一样的,都…
XGBoost是2014年3月陈天奇博士提出的,是基于CART树的一种boosting算法,XGBoost使用CART树有两点原因:对于分类问题,CART树的叶子结点对应的值是一个实际的分数,而非一个确定的类别,这有利于实现高效的优化算法:XGBoost有两个特点快和准,快一方面是并行的原因,另一方面是CART树的计算没有对数项. XGBoost首先是一种基于决策树的集成模型,假设有K棵CART树,则集成的预测结果为:(fK代表第k颗树的输出结果) XGBoost的目标优化函数定义为: 目标优化…
之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 一.业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景.那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为“已支付” 扣减商品库存 给会员增加积分 创建销售出库单通知仓库发货 这是一…
所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 首先说一下,这里可能会牵扯到一些 Spring Cloud 的原理,如果有不太清楚的同学,可以参考之前的文章:<拜托,面试请不要再问我Spring Cloud底层原理!>. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景. 那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为“已支付” 扣减商品库存 给会员增加积分 创建销售出库单通…
http://news.mbalib.com/story/88506 P2P.P2C .O2O .B2C.B2B. C2C,每天看着这些常见又陌生的名词,如果有人跟你说让你解释它的含义,金融的小伙伴们是不是瞬间石化了,是不是欲言又止了,哑口无言了,它的概念意义你真的懂吗?来吧,跟着小编一起来真正的了解下它们的含义和区别吧! P2P.P2C .O2O .B2C.B2B. C2C的概念解析 P2P到底是什么呢? P2P借贷是一种将非常小额度的资金聚集起来借贷给有资金需求人群的一种民间小额借贷模式.P…