[算法模版]Prim-完全图最小生成树】的更多相关文章

[算法模版]Prim-完全图最小生成树 众所周知,对于常用的Kruskal算法,算法复杂度为\(O(m \log m)\).这在大多数场景下已经够用了.但是如果遇到及其稠密的完全图,Prim算法就能更胜一筹. Prim算法也可以使用很多数据结构进行优化.但是对于完全图来说,这写优化都无足轻重.暴力的Prim算法的\(O\left(n^{2}+m\right)\)就足够了. Prim算法也很简单.就是每次考虑把一个加入一个点到已经建成的生成树.可以证明如果选择一个不在当前生成树,且离当前生成树最近…
最小生成树MST(Minimum Spanning Tree) (1)概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边,所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和. (2)性质 一个连通图可以有多个生成树: 一个连通图的所有生成树都包含相同的顶点个数和边数: 生成树当中不存在环: 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特…
最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树基础理论 定义 一个有 \(n\) 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 \(n\) 个结点,并且有保持图连通的最少的边. --来自百度百科 我们用比较通俗的语言来讲:(百度百科的解释实在是太鬼了,我这个明白人都看着迷糊) 给定一张包含\(n\)个点\(m\)条边的连通带权…
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vexs[MAXVEX]; EdgeType arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }MGraph…
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.像 Kruskal算法一样,Prim算法也是贪婪算法. 二.Prim算法思想 Prim算法的思想很简单,一棵生成树意味着必须连接所有顶点.因此必须将两个不相交的顶点子集连接起来才能生成生成树 .并且它们必须以最小的权重边连接,以使其成为最小的生成树(MST).它从一棵空的生成树开始.这个…
最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里姆算法的基本思想: 从连通网N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,v),将其顶点加入到生成树的顶点集合U中.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合U中.如此继续下去,直到网中的所有顶点都加入到生成…
Kruscal算法求图的最小生成树 概述   和Prim算法求图的最小生成树一样,Kruscal算法求最小生成树也用到了贪心的思想,只不过前者是贪心地选择点,后者是贪心地选择边.而且在算法的实现中,我们还用用到了并查集(也称不相交集的)Union /Find 算法来判断两个节点连通后会不会形成一个环.该算法的思想很简单:将图的所有边按从小到大顺序排序,每次都选取权值最小的边加入最小生成树,如果该边的加入会使生成树形成一个环,则跳过该边.   这里引入并查集的概念,可以使问题变得简单化.并查集就是…
普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程造价最小呢?可以把线路的造价看成权值求这几个城市的连通图的最小生成树.求最小造价的过程也就转化成求最小生成树的过程,则最小生成树表示使其造价最小的生成树. 那么怎么样用普利姆算法(prim算法)求最小生成树(MST)? 此以图例方式详述prim算法求最小生成树过程,希望对大家有帮助!   工具/原料…
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权值之和最小.(注:N个顶点的图中,其最小生成树的边为N-1条,且各边之和最小.树的每一个节点(除根节点)有且只有一个前驱,所以,只有N-1条边.) 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(Robert C.…
/* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using namespace std; ; const int inf = 0x3f3f3f3f; struct { int c,f;//c为边的容量,f为边的容量 }edge[maxn][maxn]; int dis[maxn]; int v,e; bool bfs()//利用bfs进行分层处理,当汇点无法分层时得…
还是畅通工程Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 54905    Accepted Submission(s): 24918 Problem Description某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接…
[算法模版]Tarjan爷爷的几种图论算法 前言 Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会).这里会对这三种算法进行简单介绍. 定义 强连通(strongly connected): 在一个有向图\(G\)里,设两个点a, b 发现,由\(a\)有一条路可以走到\(b\),由\(b\)又有一条路可以走到\(a\),我们就叫这两个顶点(a,b)强连通. 强连通图: 如果 在一个有向图\(G\)中,每两个点都强连通,我们就叫这个图,强连通图. 分量:把一个…
[算法模版]子序列DP 如何求本质不同子序列个数? 朴素DP 复杂度为\(O(nq)\).其中\(q\)为字符集大小. \(dp[i]\)代表以第\(i\)个数结尾的本质不同子序列个数.注意,这里对于每一个字符,只计算上一个相同字符带来的贡献.如果全部计算的话会算重复. 最后统计答案的时候也只统计每个字符最后一次出现的位置的答案. 例题:[线上训练13]子序列 中的50分部分分 #include<iostream> #include<cstdio> #include<cstr…
[算法模版]AC自动机 基础内容 板子不再赘述,OI-WIKI有详细讲解. \(query\)函数则是遍历文本串的所有位置,在文本串的每个位置都沿着\(fail\)跳到根,将沿途所有元素答案++.意义在于累计所有以当前字符为结尾的所有模式串的答案.看代码就能很容易的理解. 另外\(e[i]\)记录的是第\(t\)个模式串结尾是哪个节点(所有节点均有唯一的编号). 贴个P5357 [模板]AC自动机(二次加强版)板子: #include<iostream> #include<cstdio&…
[算法模版]Link-Cut-Tree 博主懒本博客只对现有博客进行补充,先直接放隔壁链接. FlashHu-LCT总结 Menci-LCT学习笔记 make-root操作 make-root操作用于把任何一个点反转到当前树的根节点. 做法是先把要进行操作的节点x进行access,将root和x进行连通.然后进行splay(x)操作,把x变成splay的根.(请注意,这时候x在主树的深度仍然没有改变). 随后将x的子树全部进行反转操作.也就是改变了这个splay的深度.虽然splay和splay…
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条具有最小权值的…
最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的.在这些边中选择N-1条出来,连接所有N个点.这N-1条边的边权之和是所有方案中最小的. Prim算法的时间复杂度时O(n^2)的,因此适用于稠密图的最小生成树,如果是稀疏图的情况下采用Kruskal算法更好. Prim算法蕴含了贪心的思想,其原理是把图中所有的点分成两个集合,一个集合(V)是已经在生成树中的点,另一个集合(G)是不在生成树中的点,然后寻找起点在V中,终点在G中的边中权值最小的边加入生成树,然后把终点从G移到V中…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成树问题. 方法一 . 通过不断找到最小的边来找到终于结果. Kruskal 算法 #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> using namespac…
一个连通图的生成树是一个极小的连通子图,它包含图中全部的顶点(n个顶点),但只有n-1条边. 最小生成树:构造连通网的最小代价(最小权值)生成树. prim算法在严蔚敏树上有解释,但是都是数学语言,很深奥. 最小生成树MST性质:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集.若(u,v)是一条具有最小权值(代价)的边, 其中u∈U,v∈V-U,则必存在一颗包含边(u,v)的最小生成树. prim算法过程为: 假设N=(V,{E})是连通图,TE是N上最小生成树中边的集合.算法从…
最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有权值,那么使得边权和最小的生成树叫做最小生成树.(Minimum Spanning Tree ) 解决生成树有两种常用的算法:Kruskal算法和prim算法. 这里我们讲的是prim算法求生成树的解法. 算法思想: ans = 0;(表示权值和) 1.在无向图的基础上,想象我们有一个点的集合X(初…
题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了使花费最少,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案. 每两个农场间的距离不会超过100000 输入描述 Input Description 第一行: 农场的个数,N(3<=N<=100).…
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2144&cid=1186 最小生成树,最重要的是了解思想 稠密图用Prim,稀疏图用Kruskal K(每次找最小的边连接,一条边连接两个点,所以单路就可以了) 1 #include<stdio.h> 2 #include<string.h> 3 #include<stdlib.h> 4 int bin[110]; 5 struct node 6 { 7 int…
题目 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? Kruskal算法 特点 适用于稀疏图,时间复杂度 是nlogn的. 核心思想 从小到大选取不会产生环的边. 代码实现 代码中需要采用并查集的方法检测是否有环. static class Edge { int a, b, val; public Edge(int a, int b, int val) { this.a = a; this.b = b; this.val = val; } } int[] father; //…
;//最大点数 ;//最大边数 int n,m;//n表示点数,m表示边数 struct edge{int u,v,w;} e[maxm];//u,v,w分别表示该边的两个顶点和权值 bool cmp(edge a,edge b) { return a.w<b.w; } int fa[maxn];//因为需要用到并查集来判断两个顶点是否属于同一个连通块 int find(int x) { if(x==fa[x]) return x; else return fa[x]=find(fa[x]);…
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijkstra算法,任一点的最短路径相似 4.floyd算法 多源最短路径,动态规划 a) 初始化:D[u,v]=A[u,v]b) For k:=1 to n For i:=1 to n For j:=1 to n If D[i,j]>D[i,k]+D[k,j] Then D[i,j]:=D[i,k]+D…
#include "ljjz.h" typedef struct edgedata /*用于保存最小生成树的边类型定义*/ { int beg,en; /*beg,en是边顶点序号*/ int length; /*边长*/ }edge; /*函数功能:prim算法构造最小生成树 函数参数:图的邻接矩阵g;边向量edge */ ]) { edge x; int d,min,j,k,s,v; /* 建立初始入选点,并初始化生成树边集tree*/ ;v<=g.n-;v++) { tre…
Prim Algorithm.这个算法可以分为下面几个步骤: 将顶点集V分成两个集合A和B,其中集合A表示目前已经在MST中的顶点,而集合B则表示目前不在MST中的顶点. 在B寻找与集合A连通的最短的边(u,v),将这条边加入最小生成树中.(此时,与(u,v)相连的顶点,不妨设为C,也应加入集合A中) 重复第二步,直至集合B为空集. 最小生成树: 通俗地讲,就是使得图GG连通时,所选取的边的长度的和最小.…
Prim与Dijistra算法有异曲同工之妙,只不过Dijistra是求最短路径,每次添加到集合中的是到固定起始点的最短距离,而Prim是求最小生成树,是整个图所有权重的最小和,每次添加到集合中的是到整个集合最短距离的点. Prim算法具体如下所示: #include <iostream> using namespace std; #define INF 1e7 #define MAXNODE 100 bool flag[MAXNODE]; int closest[MAXNODE]; int…
之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集合中权值最小的边,查看边的两个顶点是否能和集合W构成环路,若能构成环路,则舍去:否则选取下一条最小权值边重复上一步. 这里需要注意一个问题,我们从最小权值的边开始寻找最小生成树, 判断当即将选入的边的两个顶点是否会和已经在集合中的顶点构成环路,这个是我们需要解决的问题. 先说下Kruskal算法的数…
Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 64912   Accepted: 26854 Description Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He nee…