Description 解题报告: 因为给定答案范围,暴力枚举时间,然后再两两枚举野人,判断是否有可能在某一年相遇,我们设这一年为\(x\),那么显然相交的条件是: \(x*(p[i]-p[j])+y*M=s[j]-s[i]\) 扩展欧几里得求得 \(x\) 的最小正整数解,判断这个线性方程的解是否存在且在他们寿命期内即可 #include <algorithm> #include <iostream> #include <cstdlib> #include <c…
枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans*N^2log(ans)), 但是实际远小于....能够AC -------------------------------------------------------------------- #include<cstdio> #include<algorithm> #inclu…
Description Input 第1行为一个整数N(1<=N<=15),即野人的数目.第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0<=Li<=106 ),表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值. Output 仅包含一个数M,即最少可能的山洞数.输入数据保证有解,且M不大于106. 看到这题,我们想到了bzoj 1477 青蛙的约会. 但是我们发现l的值不确定..所以我们使用枚举大发.. 直接从scanf的…
首先答案不会很大,所以枚举答案m,于是把问题转为了判定: 关于如何判定: 首先题目中虽然没说但是数据是按照初始洞穴编号排的序,所以并不用自己重新再排 假设当前答案为m,相遇时间为x,野人i和j,那么可以列出同余式: \[ x(p[i]-p[j])\equiv c[j]-c[i](mod\ m) \] \[ x(p[i]-p[j])+ym=c[j]-c[i] \] 于是可解exgcd.由于并不是互质的,所以最后的算天数需要m/d #include<cstdio> using namespace…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i , j 能否满足在寿命内不相遇: 也就是 T*pi + ci ≡ T*pj + cj (mod m) 变成  ( pi - pj )*T + km = cj - ci 用扩展欧几里得解这个方程,得到T若大于两人中较小的寿命或无解则可行. 代码如下: #include<iostream> #inc…
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include &l…
http://172.20.6.3/Problem_Show.asp?id=1372 想法其实很好想,但是我扩展欧几里得还是用得不熟练,几乎是硬套模板,大概因为今天一个下午状态都不大好.扩展欧几里得算法计算的是 : ab互质时ax+by=1或ab不互质时ax+by=gcd(a,b)(废话)的一个整数解,可以据此推导一个方程是否有解.然后我理解这个基本概念理解了一个下午,非常智障了.这道题也是模板,两两对比即可. 代码 #include<iostream> #include<cstdio&…
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream> #include<cstdio> #include<map> #include<cmath> using namespace std; long long T,K,y,z,p; map<long long,long long>mp; long long…
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射线分别第一次经过这些点的时间. 解法一: (模拟) 射线不管怎么反射,都是和水平方向成45°角的,也就是说每一段射线上的点,横坐标和纵坐标的和或者差相等. 把每一个点放入它所对应的对角线里,然后模拟射线的路径就好. 代码: #include <iostream> #include <cstd…
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T-1], 输出x[2],x[4]......x[2T]. T<=100,0<=x<=10000. 如果有多种可能的输出,任意输出一个结果即可. 由于a和b都小于等于10000,直接枚举a和b暴力可以过.但是有没有更快的方法呢? 首先令递推式的i=2,那么x[2]=(a*x[1]+b)mod 1…