原文:http://blog.sina.com.cn/s/blog_593af2a70102uwhl.html 一早出发,8点20就赶到现场, 人越聚越多,Ng提前几分钟到达现场,掌声一片.    Ng的报告总体上提到了五个方向.    1)Deep Learning相比于传统方法的优势           首先,一个很直观的图,随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高,后来这个在提问环节也有同学问道,是否会一直提高,Andrew Ng也坦诚需要面…
出处 以下内容转载于 网友 Fiona Duan,感谢作者分享 (原作的图片显示有问题,所以我从别处找了一些附上,小伙伴们可以看看).最近越来越觉得人工智能,深度学习是一个很好的发展方向,应该也是未来科技的关键核心. 隆重分享,中科院自动化所录制的视频:http://pan.baidu.com/s/1c0vjEIc(英文的,没有中文字幕,考听力了) 7月7日,笔者有幸在中科院自动化所现场听取了Andrew Ng以<Deep Learning:Overview and Trends>的精彩演讲.…
今天学习Andrew NG老师<机器学习>之6 - 6 - Advanced Optimization,做笔记如下: 用fminunc函数求代价函数最小值,分两步: 1.自定义代价函数 function [jVal,gradient] = costFunction(theta)jVal = (theta(1)-5)^2 + (theta(2)-5)^2;gradient = zeros(2,1);gradient(1) = 2*(theta(1)-5);gradient(2) = 2*(the…
转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学习的技术制高点,百度在2014年5月19日宣布曾领导谷歌的深度学习项目——Google Brain ,被誉为谷歌大脑之父的Andrew Ng加盟百度,正式领导百度研究院工作,尤其是Baidu Brain计划.7月7日,他应邀做客中国科学院自动化研究所,发表了<Deep Learning:Overvi…
近日,在网易公开课视频网站上看完了<机器学习>课程视频,现做个学后感,也叫观后感吧. 学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew Ng教授主讲的计算机系课程(编号CS229)<机器学习>(网址http://v.163.com/special/opencourse/machinelearning.html)(注:最早是在新浪公开课上发现的这门课,看了前几集没有字幕的视频.后来经由技术群网友的指引才找到网易,看到了全部翻译完的视频)…
我的机器学习系列从现在开始将会结合Andrew Ng老师与sklearn的api是实际应用相结合来写了. 吴恩达(1976-,英文名:Andrew Ng),华裔美国人,是斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任.吴恩达是人工智能和机器学习领域国际上最权威的学者之一.吴恩达也是在线教育平台Coursera的联合创始人(with Daphne Koller). 2014年5月16日,吴恩达加入百度,担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划…
最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识. 本来想去网上查一查机器学习的书籍,发现李航的<统计学习方法>和PRML(Pattern Recognition And Machine Learning)很受人推崇,有空再看吧. 然后在图书馆碰到了天佑,给我推荐了coursera这个网站,上面有Andrew Ng针对网络版的机器学习教程,挺好…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先回顾…
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http://cs229.stanford.edu/syllabus.html http://www.cnblogs.com/jerrylead/default.html?page=3 http://www.cnblogs.com/madrabbit/ https://blog.csdn.net/xiahouz…