5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采样. 一个序列模型模拟了任意特定单词序列的概率,对新序列采样即是对概率分布进行采样来生成一个新的单词序列. 假设你的RNN训练模型为: 对于新序列进行采样第一步即是对想要模型生成的第一个词进行采样 设置\(a^{<0>}=0,x^{<1>}=0\)从而得到所有可能的输出结果\(\hat…
一.GRU 其中, rt表示重置门,zt表示更新门. 重置门决定是否将之前的状态忘记.(作用相当于合并了 LSTM 中的遗忘门和传入门) 当rt趋于0的时候,前一个时刻的状态信息ht−1会被忘掉,隐藏状态h^t会被重置为当前输入的信息. 更新门决定是否要将隐藏状态更新为新的状态h^t(作用相当于 LSTM 中的输出门) . 二.GRU的优点:解决梯度消失的问题…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780. 门控循环神经网络单元GRU 长短期记忆网络LSTM 记忆细胞更新: \[\breve{C}^{<t>}=tanh(W_c[a^{<t-1&g…
1.为何选择序列模型? 给出上面一些序列数据的例子,真的很神奇,语音识别.音乐生成.情感分类.DNS序列分析.机器翻译.视频活动检测.命名实体识别. 2.数字符号 对于输入序列x,进行人名识别,输出中进行标识.其中T_x(i)表示第i个序列的长度,此处的例子=9. 如何表示单词,首先是有一个词典,假设为10000长度,那么每一个出现在字典中的单词都可以被表示为10000维的one-hot向量. //但是这也太高维了,肯定有改进办法的. 3.RNN 为什么标准的神经网络不可以? 1.对于序列来说,…
1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域. (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多,多对一,多对多(个数不同)等情况来针对不同的应用. 1.2数学符号 (1)x(i)<t>前面的i表示第i个训练样本,t表示某个序列样本中索引位置,如下面的一句话是一个样本,“and”的索引是3,序列的长度用Tx表示,下面句…
一.双向循环神经网络BRNN 采用BRNN原因: 双向RNN,即可以从过去的时间点获取记忆,又可以从未来的时间点获取信息.为什么要获取未来的信息呢? 判断下面句子中Teddy是否是人名,如果只从前面两个词是无法得知Teddy是否是人名,如果能有后面的信息就很好判断了,这就需要用的双向循环神经网络. 至于网络单元到底是标准的RNN还是GRU或者是LSTM是没有关系的,都可以使用. (2)双向循环神经网络(BRNN)的基本思想是提出每一个训练序列向前和向后分别是两个循环神经网络(RNN),而且这两个…
前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然,依然感谢这个视频对我理解RNN的帮助,链接在此: https://www.bilibili.com/video/BV1z5411f7Bm?spm_id_from=333.337.search-card.all.click 循环神经网络 循环神经网络(Recurrent Neural Network,RNN)…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.9语音辨识 Speech recognition 问题描述 对于音频片段(audio clip)x ,y生成文本(transcript),人听见的或者麦克风捕捉的都是空气中细微的气压变化,语音识别系统能够根据这种微弱的气压变化将音频转化为文本字符. 将空气中微弱的气压变化显示成频率图的形式,并输出音频的文本内容如下图所示: 考虑到人的耳朵并不会处理声音的原始波形,而是通过一种特殊的物理结构来测量不同的频率和强…