题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一.世界满汉全席协会是由能够料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师. 为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在參赛的厨师之中,找到满汉料理…
P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一.世界满汉全席协会是由能够料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师. 为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在參赛的厨…
题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判断一下每一个点选与不选是否在同一个强连通分量内即可 卡点:无 C++ Code: #include <algorithm> #include <cstdio> #include <iostream> #define maxn 210 #define maxm 2010 in…
洛谷 最近刚刚学的2-sat,就刷了这道裸题. 2-sat问题一般是用tarjan求的,当出现(x,y)或(!x,y)或(x,!y)三种选择时,我们可以把!x->y,!y->x连边. 然后直接tarjan. 比如这一题,设汉菜为是,满菜为非,直接按上面所述连边跑tarjan,判断是与非是否在同一强连通分量中. 在,就输出BAD,不在,则输出GOOD. code: #include <bits/stdc++.h> using namespace std; const int N=10…
洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.m条单向通道连接相邻的两对情侣所在电影院.然后HXY有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可.并且每对情侣只需烧一遍,电影院可以重复去.然后她想花尽…
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记.如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B).当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>.绝对连通区域是指…
[洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现在的问题是出现了\(SCC\),我们缩点之后\(SCC\)形成了一个\(SCC\),我们还是贪心考虑,显然不是入度为\(0\)的\(SCC\)仍然可以类似上面的任意删点,只需要按照\(SCC\)的拓扑序倒序处理,对于入度为\(0\)的\(SCC\),至少要留下一个点,那么这样子就可以判断了. #in…
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的. 不过好消息是,聪聪得到了一份荒岛的地图.地图上标注了N个野人居住的地点(可以看作是平面上的坐标).我们知道,同一个部落的野人总是生活在附近.我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离.聪聪还获…
题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation point). 题解 在一个无向图里的割点分为两种,第一种就是一棵树的根节点并且他的度要大于等于2,删去这个点他的子树就不连通了(如上图的1号点). 第二种就要用到tarjan算法的思想,tarjan求出每个点的dfs顺序,然后记录他子树中能访问到的dfn最早的点.如果一个点不为根且他的…
考虑\(2-SAT\). 将汉式看作\(0\)状态,满式看做\(1\)状态,将每个材料拆成\(01\)两个状态. 从\(a\)向\(b\)连有向边表示的意义为选了\(a\)后必须选\(b\). 那么每次连边的方式如下: \(add(x_{a \oplus 1},y_b),add(y_{b \oplus 1},x_a)\)(\(x_a\)和\(y_b\)为评审员的要求,\(x\)和\(y\)表示材料,\(a\)和\(b\)表示状态) 意义为若没有满足评审员的其中一个要求,则另一个要求必须满足. 连…
正解:tarjan+贪心(?并不会总结是什么方法QAQ,,, 解题报告: 传送门! 这题是真的题意杀,,,我我我要不是之前知道题目大意了我怕是怎么看都看不懂这是个什么意思昂QAQ 所以先说下题目大意好了QAQ 大概就是说有一个连通图,现加入一条边,这条边可以连接任意两个点麻油影响,然后现在要断开一条边使得这个图变得不连通,求保证不管怎么加边都满足不连通的边的最小值是多少 首先想到肯定是要把桥断开,然后把边双缩成一个点,这里不港,具体看代码就可可 然后仔细思考一下可以发现把边双缩成点之后形成的会是…
简要的学了一下2-sat,然而不会输出方案. 就是个sb模板题啦 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getchar(); } while(isdig…
题目传送门 BICIKLI 题意翻译 给定一个有向图,n个点,m条边.请问,1号点到2号点有多少条路径?如果有无限多条,输出inf,如果有限,输出答案模10^9的余数. 两点之间可能有重边,需要看成是不同的路径. 题目描述 A bicycle race is being organized in a land far, far away. There are N town in the land, numbered 1 through N. There are also M one-way ro…
题目传送门 校园网络 题目背景 浙江省的几所OI强校的神犇发明了一种人工智能,可以AC任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被♂掏♂空,他们来找你帮助他们. 题目描述 共有n所学校(n<=10000)已知他们实现设计好的网络共m条线路,为了保证高速,网络是单向的.现在请你告诉他们至少选几所学校作为共享软件的母机母鸡,能使每所学校都可以用上.再告诉他们至少要添加几条线路能使任意一所学校作为母机母鸡都可以使别的学校使用上软件. 输入输出格式 输入格…
题目传送门 上白泽慧音 题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记.如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B).当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,…
因为每种食材只有一份,所以两个评委的如果有要求同一种食材的两种做法就是不可行,用这个来建立2-SAT模型 然后跑tarjan判可行性即可 #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; const int N=200005; int T,n,m,h[N],cnt,dfn[N],low[N],tot,s[N],top,bl[N]…
传送门 2-SAT裸题 把每一道菜拆成两个点分别表示用汉式或满式 连边可以参考板子->这里 然后最尴尬的是我没发现$n<=100$然后化成整数的时候只考虑了$s[1]$结果炸掉了2333 //minamoto #include<cstdio> #include<cstring> template<:;} ,M=; int head[N],Next[M],ver[M],tot; inline void add(int u,int v){ ver[++tot]=v,N…
传送门 我们可以把每一个$d$看做它的父亲,这样这个东西就构成了一个树形结构 问题是他有可能形成环,所以我们还需要一遍tarjan缩点 缩完点后从0向所有入度为零的点连边 然后再跑一下树形dp就行了 //minamoto #include<iostream> #include<cstdio> #include<cstring> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(…
1821: [JSOI2010]Group 部落划分 Group Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2596  Solved: 1221[Submit][Status][Discuss] Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的.…
终于搞懂了\(2-sat\).实际上是个挺简单的东西,像网络流一样关键在于建模. 问题:\(n\)个数\(A\),可以选择\(0\)和\(1\),现在给你\(m\)组条件\(A\),\(B\),对每个条件要求\(A\)为真或者\(B\)为真. \(2-sat\)的建图方法:把每一个或条件拆成两个.例如对于条件\(A\) \(or\) \(B\): 如果\(A\)为假,那么\(B\)必须为真.(\(A_false\) \(->\) \(B_true\)) 如果\(B\)为假,那么\(A\)必须为真…
传送门 解题思路 2-SAT 裸题. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<algorithm> using namespace std; const int MAXN = 1005; inline int rd(){ int x=0,f=1;char ch=getchar(…
这道题其实就是无线通讯网的双倍经验啦,只是在输出的时候不同罢了.还是一样的\(kruskal\)算法,但是在求的时候,应该在\(now=n-k+1\)的时候结束.本来到\(n-k\)就行了的,但是由于\(n-k+1\)这条边是在应该部落里面的,不能算,所以要找到第一个不在一个部落里面的边. 代码: #include <bits/stdc++.h> using namespace std; struct node{ int l , r; double w; }; int n , k , tot…
BZOJ_1823_[JSOI2010]满汉全席_2-sat 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1823 分析:一道比较容易看出来的2-sat. 设满为1,汉为0: 题目要求两个至少满足一个.那么建图同奶牛议会http://www.cnblogs.com/suika/p/8457467.html. 之后求一遍强连通分量. 如果同一个点的true和false在一个强连通分量中就不可能满足. 代码: #include <stdio.…
题目链接 [洛谷传送门] 题解 很显然,当这个点不是割点的时候,答案是\(2*(n-1)\) 如果这个点是割点,那么答案就是两两被分开的联通分量之间求组合数. 代码 #include <bits/stdc++.h> #define ll long long using namespace std; const int N = 500005; struct edge { int to, nt; } E[N << 1]; int dfn[N], low[N], H[N], sz[N];…
题目连接 [洛谷传送门] [LOJ传送门] 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心互相交换的所有信息,但是蓝军的网络相当的庞大,数据包从一个信息中心传到另一个信息中心可以不止有一条通路.现在需要你尽快地解决这个问题,应该把嗅探器安装在哪个中间服务器上才能保证所有的数据包都能被捕获? 题解 题目给我们的第一感觉就是,这个点一定是割点. 终点(y)的dfn应该大于等于v点的dfn,因…
原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有向图,有 $n$ 个节点 $m$ 条边,边权值 $\in[0,1000]$ . 小明要从 $1$ 走到 $n$ ,要求路径长度最大为 $d+k$ ,其中 $d$ 为 $1$ 到 $n$ 最短路长度. 问小明有多少种走法,答案对 $p$ 取模.如果有无数种走法,那么输出 $-1$ . $n\leq 1…
洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证复杂度,需要缩点后用拓扑排序统计答案.首先全相等的点本质上是相同的,可以缩到一起,所以先来一波Tarjan把0环全缩起来.接着再考虑边权为1的边.如果这时候还出现了环(包括缩点以后的自环),一定是不存在方案的,这是可以用拓扑排序判断.否则,就是个DAG,拓扑排序也可以直接计算出答案. 统计答案要注意…
[洛谷P2515][HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j).幸运的是,一个软件最多依赖另外一个软件.如果一个软件不能正常工作,那么它能够发挥的作用为0. 我们现在知道了软件之间的…
[洛谷P2783] 有机化学之神偶尔会做作弊 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 有一天他一边搓炉石一边监考,而你作为一个信息竞赛的大神也来凑热闹. 然而你的化竞基友却向你求助了. "第1354题怎么做"<--手语 他问道. 题目描述 你翻到那一题:给定一个烃,只含有单键(给初中生的一个理解性解释:就是一堆碳用横线连起来,横线都是单条的). 然后炎魔之王拉格纳罗斯用他的火焰净化了一切环(???).所有的环状碳都变成了一个碳.如图所示. 然后指定多组碳,求出它们之…
点此看题面 大致题意: 一个由\(R*C\)间矩形宫室组成的宫殿中的\(N\)间宫室里埋藏着宝藏.由一间宫室到达另一间宫室只能通过传送门,且只有埋有宝藏的宫室才有传送门.传送门分为3种,分别可以到达同行的任一宫室(横天门).同列的任一宫室(纵寰门)和以该宫室为中心周围8个的任一宫室(自 由 门).现在你可以从任一宫室开始寻宝,并可以在任一宫室结束寻宝,请求出最多可获得的宝藏数目(每个宝藏只能获得一次). 一个简单的想法 显然,我们可以将每个宫室与它能到达的宫室之间连一条边.由于可能会出现环,我们…