pandas 之 set_index】的更多相关文章

import pandas as pd data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b","c"],columns=["A","B","C"]) # ============================================================================= # O…
set_index 很有用 http://stackoverflow.com/questions/10457584/redefining-the-index-in-a-pandas-dataframe-object…
Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming l…
pandas rename 功能 在使用 pandas 的过程中经常会用到修改列名称的问题,会用到 rename 或者 reindex 等功能,每次都需要去查文档 当然经常也可以使用 df.columns重新赋值为某个列表 用 rename 则可以轻松应对 pandas 中修改列名的问题 导入常用的数据包 import pandas as pd import numpy as np 构建一个 含有multiIndex的 Series arrays = [['bar', 'bar', 'baz',…
参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_index Pandas模块是Python用于数据导入及整理的模块,对数据挖掘前期数据的处理工作十分有用,因此这些基础的东西还是要好好的学学.Pandas模块的数据结构主要有两:1.Series :2.DataFrame 先了解一下Series结构. a.创建 a.1.pd.Series([list],index…
set_index() 官方定义: 使用一个或多个现有列设置索引,   默认情况下生成一个新对象 DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) drop:默认为true,表示是否删除列作为新索引. append:是否增加列到原来的索引上. inplace:是否创建一个新的dataframe 单索引: 复合索引: reset_index() DataFrame.re…
set_index DataFrame可以通过set_index方法,可以设置单索引和复合索引. DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) append添加新索引,drop为False,inplace为True时,索引将会还原为列 In [307]: data Out[307]: a b c d 0 bar one z 1.0 1 bar two y 2.0…
1.set_index DataFrame可以通过set_index方法,可以设置单索引和复合索引. DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) append添加新索引,drop为False,inplace为True时,索引将会还原为列 In [307]: data Out[307]: a b c d 0 bar one z 1.0 1 bar two y 2.…
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEMON" import pandas as pd d = pd.date_range(', periods=7) aList = list(range(1,8)) df = pd.DataFrame(aList, index=d, columns=[' ']) df.index.name = 'val…
摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一.导入和保存数据 内容 # coding=utf-8import pandas as pdimport numpy as np### 一.创建对象## 1.可以传递一个list对象创建一个Series,Pandas会默认创建整型索引s = pd.Series([1, 3, 5, np.nan, 6,…