【Python】keras使用LSTM拟合曲线】的更多相关文章

keras生成的网络结构如下图: 代码如下: from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import LSTM, Dense, Activation from keras.utils.vis_utils import plot_model import matplotlib.pyplot as plt import numpy as np…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
from keras.layers import LSTM model = Sequential() model.add(embedding_layer) model.add(LSTM(32)) #当结果是输出多个分类的概率时,用softmax激活函数,它将为30个分类提供不同的可能性概率值 model.add(layers.Dense(len(int_category), activation='softmax')) #对于输出多个分类结果,最好的损失函数是categorical_crosse…
!mkdir '/content/gdrive/My Drive/conversation' ''' 将文本句子分解成单词,并构建词库 ''' path = '/content/gdrive/My Drive/conversation/' with open(path + 'question.txt', 'r') as fopen: text_question = fopen.read().lower().split('\n') with open(path + 'answer.txt', 'r…
博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测.所用项目和数据集来自:真实业界数据的时间序列预测挑战. 1 项目简单介绍 1.1 背景介绍 本项目的目标是建立内部与外部特征结合的多时序协同预测系统.数据集采用来自业界多组相关时间序列(约40组)与外部特征时间序列(约5组).课题通过进行数据探索,特征工程,传统时序模型探索,机器学习模型探索,深度学…
1. 动机 我近期在研究一个 NLP 项目,根据项目的要求,需要能够通过设计算法和模型处理单词的音节 (Syllables),并对那些没有在词典中出现的单词找到其在词典中对应的押韵词(注:这类单词类似一些少见的专有名词或者通过组合产生的新词,比如 Brexit,是用 Britain 和 exit 组合在一起创造出来表示英国脱欧的新词).在这两个任务中,能够对单词的发音进行预测是非常有必要的.本文详细记录我解决该问题的过程,希望能够对初学者和具有一定经验的朋友有所帮助.本文代码实现均基于 Pyth…
问题: 当使用Keras运行示例程序mnist_cnn时,出现如下错误: 'keras.backend' has no attribute 'image_data_format' 程序路径https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py 使用的python conda环境是udacity自动驾驶课程的carnd-term1 故障程序段: if K.image_data_format() == 'channels…
一.先看一个Example 1.描述,输入为一个字母,输出为这个字母的下一个顺序字母 A->B B->C C->D 2.Code import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils # 固定每次的随机数都是相同的 numpy.random.seed(7) #…
代码 import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM import marksix_1 import talib as ta lt = marksix_1.Marksix() lt.load_data(period=500) # 指标序列 m = 2 series = lt.adapter(loc=', zb_na…