添加环境变量后 修改名字 1.修改前: 2.修改后:…
本篇主要对yarn命令进行阐述 一.yarn命令概述 [root@lgh ~]# yarn -help Usage: yarn [--config confdir] COMMAND where COMMAND is one of: resourcemanager -format-state-store deletes the RMStateStore resourcemanager run the ResourceManager Use -format-state-store for delet…
1. 计数器应用 2. 数据清洗(ETL) 在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据.清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序. LogMapper.java @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fi…
spark支持YARN做资源调度器,所以YARN的原理还是应该知道的:http://www.socc2013.org/home/program/a5-vavilapalli.pdf    但总体来说,这是一篇写得一般的论文,它的原理没有什么特别突出的,而且它列举的数据没有对比性,几乎看不出YARN有什么优势.反正我看完的感觉是,YARN的资源分配在延迟上估计很糟糕.而实际使用似乎也印证了这个预感. Abstract  two key shortcomings: 1) tight coupling…
注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) yarn.resourcemanager.address 参数解释:ResourceManager 对客户端暴露的地址.客户端通过该地址向RM提交应用程序,杀死应用程序等. 默认值:${yarn.resourcemanager.hostname}:8032 (2) yarn.resourcemana…
注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目前支持两种类型的资源隔离:CPU和内存,对于这两种类型的资源,Yarn使用了不同的资源隔离方案.   对于CPU而言,它是一种“弹性”资源,使用量大小不会直接影响到应用程序的存亡,因此CPU的资源隔离方案采用了Linux Kernel提供的轻量级资源隔离技术Cgroup:对于内存而言,它是一种“限制…
错误: 14/04/29 02:45:07 INFO mapreduce.Job: Job job_1398704073313_0021 failed with state FAILED due to: Application application_1398704073313_0021 failed 2 times due to Error launching appattempt_1398704073313_0021_000002. Got exception:     org.apache…
参照site:http://hadoop.apache.org/docs/r2.6.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml 我们在配置yarn的时候只有充分了解各参数的含义,才能避免隐患.这些参数均在yarn-site.xml中配置 以下涉及的简写: RM :ResourceManager AM :ApplicationMaster NM :NodeManager 参数 默认值 描述 yarn.resourcemanager.hostn…
就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Programming Guide 个人认为这个功能对Hive的市场的影响非常小.但对Shark冲击非常大.就像win7和winXP的关系,自相残杀嘛? 这么着急的公布1.x 版是商业行为还是货真价实的体现,让我们拭目以待吧~~~~ 本文是CSDN-撸大湿原创,如要转载请注明出处,谢谢:http://blog…
YARN产生背景 MRv1的局限 YARN是在MRv1基础上演化而来的,它克服了MRv1中的各种局限性.在正式介绍YARN之前,先了解下MRv1的一些局限性,主要有以下几个方面: 扩展性差.在MRv1中,JobTracker同时兼备了资源管理和作业控制两个功能,这成为系统的一个最大瓶颈,严重制约了Hadoop集群扩展性. 可靠性差.MRv1采用了master/slave结构,其中,master存在单点故障问题,一旦它出现故障将导致整个集群不可用. 资源利用率低.MRv1采用了基于槽位的资源分配模…