题意:有一副二维地图'S'为起点,'D'为终点,'.'是可以行走的,'X'是不能行走的.问能否只走T步从S走到D? 题解:最容易想到的就是DFS暴力搜索,,但是会超时...=_=... 所以,,要有其他方法适当的剪枝:假设当前所在的位置为(x,y),终点D的位置为(ex,ey); 那么找下规律可以发现: 当 |x-ex|+|y-ey| 为奇数时,那么不管从(x,y)以何种方式走到(ex,ey)都是花费奇数步:当为偶数时同理. 这即是所谓的奇偶性剪枝.这样剪枝就可以复杂度就变为原来暴力DFS的开…