NOI2019省选模拟赛 第五场】的更多相关文章

爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\(a\)做个前缀异或和,记为\(s_i\),那么就是要找到 \[\max_{j<i}\{s_j+(s_j\oplus s_i)\}\] 我们假设\(s_i\)第\(k\)位为\(a\),\(s_j\)第\(k\)位为\(b\),\(s_j+(s_j\oplus s_i)\)第\(k\)位为\(c\)…
传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作" 这个意思就是说,如果一个点\((x,y)\)被操作过,那么它被进行的操作一定是所有操作的一个后缀和 这样的话我们只要对于每个点维护一下它有几个操作,并把操作的后缀和维护起来,就能知道它到底被怎么操作了 维护有几个操作的话二维前缀和就行了 然后关键是后缀和我们应该怎么处理 因为这是一个矩阵,那么我们考…
传送门 明明没参加过却因为点进去结果狂掉\(rating\)-- \(A\) 集合 如果我们记 \[f_k=\sum_{i=1}^nT^i{n-i\choose k}\] 那么答案显然就是\(f_{k-1}\) 然后就可以开始推倒了 \[ \begin{aligned} f_k &=\sum_{i=1}^nT^i{n-i\choose k}\\ &=\sum_{i=1}^nT^i{n-i-1\choose k}+\sum_{i=1}^nT^i{n-i-1\choose k-1}\\ &am…
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出现一次. 对于每一个正整数\(k=1,..,n+1\),求出的本质不同的长度为\(k\)的子序列的数量.对\(10^9+7\)取模. 思路: 由于只会有一个数会重复,因此考虑重复的这个数取\(0\)个.\(1\)个和\(2\)个的情况,用组合数直接算即可. 源代码: #include<cstdio>…
传送门 Solution A. 一共有\(T\)组数据 每次询问你\([l,r]\)中有多少个数能被他的所有数位整除(如果数位中含有\(0\)忽略掉) 数位dp,咕咕咕 B. 题面略 考虑一个个只有两个元素组成的小区间 可以发现若选择\([l,l+1]\),则必定要选择一个最大的区间包含\([a[l],a[l+1]]\)的区间 每个小区间看成一个点,向它所要求必须要选择的点连边,线段树优化建图 对图进行tarjan缩点,然后拓扑排序即可 全是区间询问,大概要有5棵线段树的样子 其实有简单得多的解…
区间不好做,但是我们可以转化成前缀来做.转化为前缀之后之后就是二维前缀和. 但是我还是不怎么会做.所以只能去看吉老师的题解 (确定写的那么简单真的是题解???). 我们要求模一个数余0,就等于找它的倍数.找它的倍数自然只要知道区间就可以了. 题解上面说:如果\(r1=2^n\),\(r2=2^m\),不妨设 \(n<=m\),那么结果一定在区间 \([0,2^n)\)中,而 且每一个值出现了 \(2^m\) 次 这是很显然的,因为按照异或的运算法则来讲,不可能会有比r1最高位1还高的位出现.而且…
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 B 的差分信息进行差分.在修改的时候,我们就会在 A 上 4 个位置进行修改,每次修改会涉及 B 上 4 个位置的差分修改,因此总共会涉及 16 个差分信息的修改. 回收标记的时候,我们可以先在 A 树上进行 DFS ,回收好子树内的差分信息后,再进行一次 B 的回收,得到当前节点上 B 的真实信息. 时间…
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子连边之后,我们一定可以得到一些链.假设每条轨道的最后一段作为链头,查询实际上就是查询所在链的链头. 使用 LCT 或 Splay 维护这些链即可,时间\(O(n\log_2n)\). #include <cstdio> #include <vector> using namespace…
题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它会影响的垂直方向上的鱼竿一定是一个区间,因此再套一发线段树优化即可.   这里不建议写倍增优化,因为倍增的点是\(O(n\log_2n)\),而网络流的时间是\(O(n^2m)\),因此可能会慢一些.   当然,你知道,这细网咯流咩......时间复杂度还是比较emmmm......的   代码:…
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下.左.右.左上.左下.右上.右下这\(8\)个方向移动.其中每一个皇后可以攻击这八个方向上离它最近的皇后. 求有多少皇后被攻击到\(0,1,\ldots,8\)次. 保证\(m\)个皇后中任意两个不在同一个位置. 思路: 考虑左右方向的攻击,对每一行开一个set,按列编号插入,看一下是否存在前驱/后…