Spark Pregel参数说明】的更多相关文章

Pregel是个强大的基于图的迭代算法,也是Spark中的一个迭代应用aggregateMessage的典型案例,用它可以在图中方便的迭代计算,如最短路径.关键路径.n度关系等.然而对于之前对图计算接触不多的童鞋来说,这个api还算是一个比较重量组的接口,不太容易理解. Spark中的Pregel定义如下: def pregel[A: ClassTag]( initialMsg: A, maxIterations: Int = Int.MaxValue, activeDirection: Edg…
Spark Standalone模式常见的HA部署方式有两种:基于文件系统的HA和基于ZK的HA 本篇只介绍基于ZK的HA环境搭建: $SPARK_HOME/conf/spark-env.sh 添加SPARK_DAEMON_JAVA_OPTS的配置信息: export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop000:2181,hadoop001…
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式2.1.2 GraphX 存储模式2.2 vertices.edges 以及 triplets2.2.1 vertices2.2.2 edges2.2.3 triplets2.3 图的构建2.3.1 构建图的方法2.3.2 构建图的过程2.4 计算模式2.4.1 BSP 计算模式2.4.2 图操作一…
由于本人文字表达能力不足,还是多多以代码形式表述,首先展示测试代码,然后解释: package com.txq.spark.test import org.apache.spark.graphx.util.GraphGeneratorsimport org.apache.spark.graphx._import org.apache.spark.rdd.RDDimport org.apache.spark.{SparkConf, SparkContext, SparkException, gra…
Spark+GraphX图 Q:什么是图?图的应用场景 A:图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种网状数据结构,表示为二元组:Gragh=(V,E),V\E分别是顶点和边的集合.图很好的表达了事物间的练习,常用于对事物之间的关系建模.常见应用场景有:在地图应用中寻找最短路径.社交网络关系.网页间超链接关系. ------------------------------------------ Q:有向图与无向图是什么? A:图的顶点间的连系即边是有向的,有向<A…
在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 如上面的map,filter,union属于第一类窄依赖,而join with inputs co-partitioned(对输入进行协同划分的jo…
spark spark背景 什么是spark Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目.目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL.Spark Streaming.GraphX.MLlib等子项目,Spark是基于内存计算的大数据并行计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时…
一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载. Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架.与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…