题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的…
P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网…
题目描述 在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于“d-h”或者“4-8”的字串,我们就把它当作一种简写,输出时,用连续递增的字母获数字串替代其中的减号,即,将上面两个子串分别输出为“defgh”和“45678”.在本题中,我们通过增加一些参数的设置,使字符串的展开更为灵活.具体约定如下: (1) 遇到下面的情况需要做字符串的展开:在输入的字符串中,出现了减号“-”,减号两侧同为小写字母或同为数字,且按照ASCII码的顺序,减号右…
题目描述 某次科研调查时得到了n个自然数,每个数均不超过1500000000(1.5*10^9).已知不相同的数不超过10000个,现在需要统计这些自然数各自出现的次数,并按照自然数从小到大的顺序输出统计结果. 输入输出格式 输入格式: 输入文件count.in包含n+1行: 第一行是整数n,表示自然数的个数: 第2~n+1每行一个自然数. 输出格式: 输出文件count.out包含m行(m为n个自然数中不相同数的个数),按照自然数从小到大的顺序输出.每行输出两个整数,分别是自然数和该数出现的次…
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2.每次取走的各个元素只能是该元素所在行的行首或行尾: 3.每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值*2^i,其中i表示第i次取数(从1开始编号): 4.游戏结束总得分为m次取数得分之和. 帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分. 输入输…
传送门 80分 $ Floyd $ 树的直径可以通过枚举求出.直径的两个端点$ maxi,maxj $ ,由此可知对于一个点 $ k $ ,如果满足 $ d[maxi][k]+d[k][maxj]==d[maxi][maxj] $ 那么 $ k $ 点一定在直径上.分别枚举位于直径上的起点 $ s $ 与终点 $ t $ . $ ecg $ 定义为 $ max{d(v,F)} $ 那么枚举出的线段的 $ ecg $ 一定为: $ max{min{d[maxi][s],d[maxi][t]},mi…
传送门 之前看李煜东的书一直感觉是道神题. 然后发现这题数据范围只有300?300?300? 直接上floydfloydfloyd然后暴力就完了啊. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans&l…
写在前面:由于是双倍经验就放一块了,虽然数据范围差的有点大. 题目链接 题意:在树的直径上选择一条长度不超过s的路径使这条路径上的点到树上任意点的最大距离最小. 这题数据好像非常水,我写了上界n^2不考虑多条直径还能过?不知道什么操作. 我就说说我的水法吧.dfs两遍求直径.处理直径上路径到直径两端的距离.然后再处理直径上每个点的最远距离,取min. 正确性显然. #include<bits/stdc++.h> #define mk make_pair using namespace std;…
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. 之后,按如下方式从小到大依次填写每个数K(K=2,3,…,N*N): 1.若(K−1)在第一行但不在最后一列,则将K填在最后一行,(K−1)所在列的右一列: 2.若(K−1)在最后一列但不在第一行,则将K填在第一列,(K−1)所在行的上一行: 3.若(K−1)在第一行最后一列,则将K填在(K−1)…
题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻的平行街道之间的距离都是恒定值 1 .东西向街道从北到南依次编号为0,1,2…128 , 南北向街道从西到东依次编号为0,1,2…128 . 东西向街道和南北向街道相交形成路口,规定编号为x 的南北向街道和编号为y 的东西向街道形成的路口的坐标是(x , y ). 在 某 些 路口存在一定数量的公共…