通俗理解LDA主题模型(boss)】的更多相关文章

通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是由于这篇文档的前序铺垫太长(如今才意识到这些"铺垫"都是深刻理解LDA 的基础,但假设没有人帮助刚開始学习的人提纲挈领.把握主次.理清思路,则非常easy陷入LDA的细枝末节之中),还是由于当中的数学推导细节太多,导致一直没有完整看完过. 2013年12月,在我组织的Mac…
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA…
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 Dirichlet 分布 1 Dirichlet 分布 2 Dirichlet-Multinomial 共轭 主题模型LDA 1 各个基础模型 11 Unigram model 12 Mixture of unigrams model 2 PLSA模型 21 pLSA模型下生成文档 21 根据文档反…
LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许多文本分类问题,但无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.LDA模型通过增加“主题”的方式,一定程度的解决上述问题: 一个词可能被映射到多个主题中,即,一词多义.多个词可能被映射到某个…
何谓“主题”呢?望文生义就知道是什么意思了,就是诸如一篇文章.一段话.一个句子所表达的中心思想.不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认为一篇文章.一段话.一个句子是从一个概率模型中生成的. D. M. Blei在2003年(准确地说应该是2002年)提出的LDA(Latent Dirichlet Allocation)模型(翻译成中文就是——潜在狄利克雷分配模型)让主题模型火了起来, 今年3月份我居然还发现了一个专门的LDA的R软件包(7月份有更新),可见主题模…
1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Allocation).本文的LDA仅指代Latent Dirichlet Allocation. LDA 在主题模型中占有非常重要的地位,常用来文本分类. LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.在贝叶斯学派中有: 先验分布 + 数据(似然)…
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,…
目录 概况 为什么需要 LDA是什么 LDA的应用 gensim应用 数学原理 预备知识 抽取模型 样本生成 代码编写 本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA的文章网上已经有很多了,大多都是从经典的<LDA 数学八卦>中引出来的,原创性不太多. 本文将用尽量少的公式,跳过不需要的证明,将最核心需要学习的部分与大家分享,展示出直观的理解和基本的数学思想,避免数学八卦中过于详细的推导.最后用python 进行实现. 概况 第一部分,包括以下四部分. 为什么…
在LDA主题模型之后,需要对模型的好坏进行评估,以此依据,判断改进的参数或者算法的建模能力. Blei先生在论文<Latent Dirichlet Allocation>实验中用的是Perplexity值作为评判标准. 一.Perplexity定义 源于wiki:http://en.wikipedia.org/wiki/Perplexity perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比…
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open…