PCA(主成分分析)和LDA详解】的更多相关文章

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html…
主成分分析(PCA, Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维处理 通过降维,可以发现更便于人类理解的特征 其他应用:数据可视化,去噪等 主成分分析是尽可能地忠实再现原始重要信息的数据降维方法 原理推导: 如图,有一个二维的数据集,其特征分布于特征1和2两个方向 现在希望对数据进行降维处理,将数据压缩到一维,直观的我们可以想到将特征一或者特征二舍弃一个,可以得到这样的结果 ------- : 舍弃特征1之后 ------- : 舍弃…
1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题    原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距离最小.类内间距离最大(…
1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非…
PART 1 这个性质被叫做共轭性.共轭先验使得后验概率分布的函数形式与先验概率相同,因此使得贝叶斯分析得到了极⼤的简化.   V:文档集中不重复的词汇的数目 语料库共有m篇文档,: 对于文档,由个词汇组成,可重复: 是第m个文档中的第n个词. :文档集中文档的总数 :第m个文档中包含的词汇总数 :文档m中第n个词在词典中的序号,属于1到V :文档m第n个词汇的主题标号,属于1到k :第k个主题的词汇分布中的参数向量 :第m文档的主题分布中的参数向量 (1) 是每个文档下主题的多项式分布的Dir…
一.简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像.这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片.这里,如果我们为了提…
转载地址:http://my.oschina.net/gujianhan/blog/225241 另外可以参考相关博文:http://blog.csdn.net/neal1991/article/details/46571999 一.简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像.这时,我们…
1 LDA与最小二乘法的关联 对于二值分类问题,令人惊奇的是最小二乘法和LDA分析是一致的.回顾之前的线性回归,给定N个d维特征的训练样例(i从1到N),每个对应一个类标签.我们之前令y=0表示一类,y=1表示另一类,现在我们为了证明最小二乘法和LDA的关系,改变训练目标: 就是将训练目标0/1做了值替换.我们列出最小二乘法代价函数: w和是拟合权重参数.分别对和w求导得: 从第一个式子展开可以得到: 消元后,得.又因为: 化简第二个求导式子展开后和下面的公式等价: 其中和是二值分类中类内离散矩…
MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看:Principal component analysis of raw data - mathworks [coeff,score,latent,tsquared,explained,mu] = pca(X) coeff = pca(X) returns the principal componen…
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机器学习谈起中提到的SVM(支持向量机). 我们已经知道,车牌定位模块的输出是一些候选车牌的图片.但如何从这些候选车牌图片中甄选出真正的车牌,就是通过SVM模型判断/预测得到的.   图1 从候选车牌中选出真正的车牌 简单来说,EasyPR的车牌判断模块就是将候选车牌的图片一张张地输入到SVM模型中,…
我正在做一个开源的中文车牌识别系统,Git地址为:https://github.com/liuruoze/EasyPR. 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思.我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术.计算机图形学.机器学习等.我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源:2.我希望有人能够一起协助强化这套系统,包括代码.训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等…
工作中有个真理:如果你连自己所做的工作的来龙去脉都讲不清楚,那你是绝对不可能把这份工作做好的. 这适用于任何行业.如果你支支吾吾,讲不清楚,那么说难听点,你在混日子,没有静下心来工作. 检验标准:随时向别人解释你的工作,让别人提出尖锐的问题,看你是不是答不上来. 16S概念 什么是16S?S是什么意思? 16S分析是用来干嘛的?能分析什么? 16S大致的分析原理是什么? 有点生物学基础的会知道16S和核糖体有关,但大多数还是搞不清楚它们之间的关系. 先明确一些概念: 核糖体:Ribosome,由…
在上篇文档中作者已经简单的介绍了EasyPR,现在在本文档中详细的介绍EasyPR的开发过程. 正如淘宝诞生于一个购买来的LAMP系统,EasyPR也有它诞生的原型,起源于CSDN的taotao1233的一个博客,博主以读书笔记的形式记述了通过阅读“Mastering OpenCV”这本书完成的一个车牌系统的雏形. 这个雏形有几个特点:1.将车牌系统划分为了两个过程,即车牌检测和字符识别.2.整个系统是针对西班牙的车牌开发的,与中文车牌不同.3.系统的训练模型来自于原书.作者基于这个系统,诞生了…
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的.其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分…
Android系统基于linux内核.JAVA应用,算是一个小巧精致的系统.虽是开源,但不像Linux一般庞大,娇小可亲,于是国内厂商纷纷开发出自己基于Android的操作系统.在此呼吁各大厂商眼光放远,不要各自之间设置技术壁垒,使得国内能在OS方面接着Android的东风,一鼓作气打造出属于我们自己的操作系统的天空! 废话少说,言归正传,Android操作系统目录结构详解.Android操作系统没有内置文件管理器,经过安装第三方文件管理器后可以对主系统内存和SD卡上的文件管理.主内存中的文件目…
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 在这之前,关于AlexNet的讲解的博客已经有很多,我认为还是有必要自己亲自动手写一篇关于AlexNet相关的博客,从而巩固我的理解. 一  介绍 Alex…
原文地址:http://blog.csdn.net/pcaxb/article/details/53759637 ES6 类(Class)基本用法和静态属性+方法详解 JavaScript语言的传统方法是通过构造函数,定义并生成新对象,prototype 属性使您有能力向对象添加属性和方法.下面是通过传统的方式创建和使用对象的案例: <span style="font-size:18px;">//Person.js function Person(x,y){ this.x…
人脸验证算法Joint Bayesian详解及实现(Python版) Tags: JointBayesian DeepLearning Python 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如对代码有兴趣的请移步我的 Github. 如需转载,请附上本文链接,不甚感激!  http://blog.csdn.net/cyh_24/article/details/49059475 Bayesian Face Revis…
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W…
详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为深度学习必备之神器.自 BN 之后, Layer Norm / Weight Norm / Cosine Norm 等也横空出世.本文从 Normalization 的背景讲起,用一个公式概括 Normalization 的基本思…
训练技巧详解[含有部分代码]Bag of Tricks for Image Classification with Convolutional Neural Networks 置顶 2018-12-11 22:07:40 Snoopy_Dream 阅读数 1332更多 分类专栏: 计算机视觉 pytorch 深度学习tricks   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/e015…
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结与笔记. 内容主要是人工智能和深度学习的简介.环境配置和简单的python实例演示. 对于刚了解人工智能基本常识和具有Python基础的人,再来看本篇文章,就会对人工智能之深度学习有种豁然开朗的感觉,也是对人工智能学习的一种进阶. PS:开发工具包在文章末尾,有需要或者有问题可以评论区留言讨论 一.…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-detail/195 声明:版权所有,转载请联系平台与作者并注明出处 引言 之前ShowMeAI对强大的boosting模型工具XGBoost做了介绍(详见ShowMeAI文章图解机器学习 | XGBoost模型详解).本篇我们来学习一下GBDT模型(详见ShowMeAI文章 图解机器学习 | GBDT模…
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集成查询).通过LINQ,我们可以使用相同API操作不同的数据源.接下来就让我们看看LINQ是什么以及如何使用? 再此之前,需要先了解的相关技术 1.        隐式类型.匿名类型.对象初始化器 1)        隐式类型,使用var关键字创建,C#编译器会根据用于初始化局部变量的初始值推断出变…
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天,按中国辞旧迎新的传统,也作为我2014年第一篇博客,我想开篇前要总结下2013年的技术学习.今年我当爸爸了,当爸爸的人是没啥时间研究什么技术和写博客的,所以2013年上半年我的文章很少很少,直到老婆5月回家待产才有重新拿起书,提起笔写技术博客.今年老婆要回上海了,估计2014年的博客数量又会少点,…
前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6.x中不同,相同的则不再叙述. EntityFramework Core 1.1方法理论详解 当我们利用EF Core查询数据库时如果我们不显式关闭变更追踪的话,此时实体是被追踪的,关于变更追踪我们下节再叙.就像我们之前在EF 6.x中讨论的那样,不建议手动关闭变更追踪,对于有些特殊情况下,关闭变更追…
Java 字符串格式化详解 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 文中如有纰漏,欢迎大家留言指出. 在 Java 的 String 类中,可以使用 format() 方法格式化字符串,该方法有两种重载形式: String.format(String format, Object... args) 和 String.format(Locale locale, String format, Object... args).两者的唯一区别是前者使用本地语言环境,后者使用指…
Android Notification 详解(一)--基本操作 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Notification 文中如有纰漏,欢迎大家留言指出. 前几天项目中有用到 Android 通知相关的内容,索性把 Android Notification 相关的知识都看了一遍,稍作梳理,在此做个总结,以备不时之需. 温故而知新,可以为师矣~ 下图是我对 Notification 做的思维导图,也是本文的主要逻辑.  本文主要…
Android Notification 详解 版权声明:本文为博主原创文章,未经博主允许不得转载. 前几天项目中有用到 Android 通知相关的内容,索性把 Android Notification 相关的知识都看了一遍,稍作梳理,在此做个总结,以备不时之需. 温故而知新,可以为师矣~ 下图是我对 Notification 做的思维导图,也是本文的主要逻辑.  本文主要讲述 Notification 的基本操作部分,进阶部分的内容还在学习ing~ Notification 概述 Notif…
几个重要的概念 首先先明确几个概念: WorkPlace : 工作区 Index: 暂存区 Repository: 本地仓库/版本库 Remote: 远程仓库 当在Remote(如Github)上面clone一个项目到本地时(假设项目名为GitTest),在本地就会看到一个名为GitTest的目录,目录下有项目代码和一个名为.git的目录,什么是工作区呢,就是除了.git文件夹以外的所有东西,我们主要在工作区上阅读,修改,添加删除代码和其他内容,而这个.git目录就称为一个版本库,这个版本库中存…