Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…
题解 我,理解题解,用了一天 我,卡常数,又用了一天 到了最后,我才发现,我有个加法取模,写的是while(c >= MOD) c -= MOD 我把while改成if,时间,少了 六倍. 六倍. 六倍!!!! maya我又用第一次T的代码改掉了while,我第一次T的代码也A了= = 那我,改单位复根,FFT循环展开,分治内部循环展开,为了啥= = 好吧,但是我最后上榜了...LOJ第四的样子.. \(\prod_{i = 1}^{N} d_{i}^{m}\sum_{i = 1}^{N}d_{…
由于菜鸡的我实在是没学会上升幂下降幂那一套理论,这里用的是完全普通多项式的做法. 要是有大佬愿意给我讲讲上升幂下降幂那一套东西,不胜感激orz! 首先可以想到prufer序列,如果不会的话可以左转百度. 我们把答案写成prufer序列的形式,这样的话他的贡献是固定的,其中$d_i$表示$i$的出现次数. $ans = (n-2)! \prod_{i=1}^n \frac{a_i^{d_i+1}}{d_i!}$ 把原来的柿子带进来 $ans = \sum_{\sum d_i = n-2} (n-2…
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符,第 \(i\) 个音符的音高为 \(h_i\).IA 的音域是 \(A\),她只能唱出 \(1\sim A\) 中的正整数音高.因此 \(1\le h_i\le A\). 在写歌之前,IA 需要确定下这首歌的结构,于是她写下了 \(Q\) 条限制,其中第 \(i\) 条为:编号在 \(l_i\) 到…
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下方与右下方,且他们也都满足 这样的悬挂规则.为了让这个模型更加美观,小Y选择了一种让这棵二叉树的中序遍历序列最小的悬挂方法.所谓中序遍历最小,就是指中序遍历的结点编号序列的字典 序最小. 一天,这个模型不小心被掉在了地上,幸运的是,所有结点和边都没摔坏,但是她想…
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接.水管有以下 \(15\) 种形状: 游戏开始时,棋盘中水管可能存在漏水的地方. 形式化地:如果存在某个接头,没有和其它接头…
[LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧,石桥依旧,榕树虽是历经荣枯更迭,依旧亭亭如盖,只是Evan和Lyra再也不是七八年前不经世事的少年了. -- "已经快是严冬了,榕树的叶子还没落呢--" "榕树是常绿树,是看不到明显的落叶季节的--" "唉--想不到已经七年了呢.榕树还是当年的榕树,你却不是…
[LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\).接着她又在墙上钉上了 \(m\) 根绳子,绳子的一端是点 \(s_i(sx_i,sy_i)\),绳子经过点 \(t_i(tx_i,ty_i)\),同时绳子的长度是 \(L_i\).其中 \(s_i\) 点是粘在墙上的,而另一个端点是可以移动的.初始情况下绳子是紧绷的一条直线段. 接着,对每一根绳…
[LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所了." "唔,那你之后会去哪呢?" "去一个没有冬天的地方." 对于一个正整数 \(n\),我们定义他在 \(b\) 进制下,各个位上的数的乘积为 \(p = F(n, b)\). 比如 \(F(3338, 10) = 216\). 考虑这样一个问题,已知 \…
[LOJ#2327]「清华集训 2017」福若格斯 试题描述 小d是4xx9小游戏高手. 有一天,小d发现了一个很经典的小游戏:跳青蛙. 游戏在一个 \(5\) 个格子的棋盘上进行.在游戏的一开始,最左边的两个格子上各有一个向右的青蛙,最右边的两个格子上各有一个向左的青蛙. 每次移动可以选取一个青蛙,向这只青蛙的前方移动一格到空格子中或跳过前方的一个不同朝向的青蛙并移动到空格子中. 为了使你更好地理解这个游戏,我们下发了一个游戏demo作为参考(注意:这个demo中的棋盘大小和题目中并不相同).…