Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille, Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 U…
一.简单介绍 目标检测(Objection Detection)算是计算机视觉任务中比较常见的一个任务,该任务主要是对图像中特定的目标进行定位,通常是由一个矩形框来框出目标. 在深度学习CNN之前,传统的做法一般是借助图像处理技术提取图像中目标的特征(如最常见的SIFT.LBP.HOG等),然后采用机器学习的方法(如SVM等)来训练识别,在实现上通常是采用不同尺度的矩形窗口在图像上滑动提取特征在进行识别(有点像是小尺寸图像分类识别的意思). 在深度学习和CNN爆红之后,很多研究者就开始用用CNN…
摘要 目前检测的准确率受物体视频中变化的影响,如运动模糊,镜头失焦等.现有工作是想要在框的级别上寻找时序信息,但这样的方法通常不能端到端训练.我们提出了flow-guided feature aggregation,一个用于视频物体检测的端到端学习框架.在特征级别上利用时序信息,通过相邻帧的运动路径提高每帧的特征,从而提高检测的准确率. 简介 特征提取网络提取出每帧的feature maps.为了enhance被处理帧的特征,用一个光流网络(flownet)预测相邻帧和该帧之间的motions.…
参考:https://www.jianshu.com/p/1ed2d9ce6a88 安装 安装conda+tensorflow库 下载protoc linux x64版,https://github.com/protocolbuffers/protobuf/releases 将下载的zip文件,进入解压后的文件,将里面的bin/protoc文件复制到/usr/bin/protoc sudo cp bin/protoc /usr/bin/protoc 下载models仓库 git clone ht…
出处 arXiv.org (引用量暂时只有3,too new)2017.7 SourceCode:https://github.com/RichardYang40148/MidiNet Abstract 以前的音乐生成工作多基于RNN,受DeepMind提出的WaveNet的启发,作者尝试用CNN来生成音乐,确切地说,用GAN来生成音乐,模型称为MidiNet.与Google的MelodyRNN(magenta)相比,在realistic和pleasant上旗鼓相当,yet MidiNet’s…
Object 1. @HotSpotIntrinsicCandidate @HotSpotIntrinsicCandidate public final native Class<?> getClass(); 使用@HotSpotIntrinsicCandidate注解标注的方法,表示JVM可能为该方法提供了一些基于CPU指令的高效实现,而非使用Java的实现. 2. native方法 getClass().hashCode().clone().notify()等方法的默认实现都是native…
作者:周博磊链接:https://www.zhihu.com/question/51704852/answer/127120264来源:知乎著作权归作者所有,转载请联系作者获得授权. 图1. 这张图清楚说明了image classification, object detection, semantic segmentation, instance segmentation之间的关系. 摘自COCO dataset (https://arxiv.org/pdf/1405.0312.pdf) Se…
论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如何将全卷积网络应用到目标检测中去?本文提出DenseBox,一个集成的FCN 框架可以直接在图像的位置上预测出目标物的边框及类别.本文两方面贡献:(1)FCN可以用于检测不同的目标(2)在多任务学习过程中结合landmark定位可以进一步提高对目标的检测的准确性. 介绍 本文只关注一个问题,即如何将…
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik 该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当时性能最好的算法高30%.算法主要结合了两个key insights: (1)可以将高容量的卷积神经网络应用到自底向上的Region proposals(候选区域)上,以定位和分割目标 (2)当带标签的训练数据稀少时,可以先使用辅助数据集进行有监督的预训练,然后再使用训练集对网络的特定范围进行微调,…
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation…