(cvpr 2018)Technology details of SMRD】的更多相关文章

1.摘要 近年来,深度卷积神经网络(CNN)方法在单幅图像超分辨率(SISR)领域取得了非常大的进展.然而现有基于 CNN 的 SISR 方法主要假设低分辨率(LR)图像由高分辨率(HR)图像经过双三次 (bicubic) 降采样得到,因此当真实图像的退化过程不遵循该假设时,其超分辨结果会非常差.此外,现有的方法不能扩展到用单一模型解决多种不同的图像退化类型.为此,提出了一种维度拉伸策略使得单个卷积超分辨率网络能够将 SISR 退化过程的两个关键因素(即模糊核和噪声水平)作为网络输入.归因于此,…
前言 论文地址:见researchgate, 方法继续更新. 解决的问题: 1.discriminative learning methods 用于denoising 任务学习到的是一个对于每种 噪声水平的具体模型,需要不同的噪声水平,灵活性差,不能用于实际. 提出了FFDNet的优势 1.downsampled sub-images to speed up the inference 2.采用正交正则化(orthogonal regularization) to enhance the gen…
爬取 CVPR 2018 过程中遇到的坑 使用语言及模块 语言: Python 3.6.6 模块: re requests lxml bs4 过程 一开始都挺顺利的,先获取到所有文章的链接再逐个爬取获取内容, 中间有一部分的是用正则进行匹配出想要的内容,写完了就想全部跑一遍试试吧. 爬到一半出错了,看了一下是这篇出问题了. 好吧,那就f12看看什么情况. emmmmm.... 跟之前的差不多啊... 直接复制下来匹配试试 ...都能匹配到啊... 直到....emmmm....看看不print出…
这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://github.com/floodsung/LearningToCompare_FSL 环境选用 Tensorflow 1.4 因为他是 cuda8 的. 切换conda源 bash /public/script/switch_conda_source.sh 创建虚拟python环境 conda creat…
在刚刚结束的CVPR2018: DeepGlobe Road Extraction Challenge(全球卫星图像道路提取)比赛中,北京邮电大学信息与通信工程学院模式识别实验室张闯老师指导的研究生周理琛同学,脱颖而出,取得第一名的好成绩.本届CVPR规模浩大,有超过3309篇论文投稿,接收979篇论文.此次DeepGlobe道路检测比赛参加队伍众多,包括许多专业级的卫星公司和研究机构(其中,Road Extraction Challenge比赛的第2-4名都来自专业的地图和导航公司). htt…
Mutiple-Image SSR 关键的技术imformation fusion 1. 将单一场景的多图像经过Resnet, 其中每张图片的维度变为了输入的两倍.同时,这些输入的单一场景的多图像进行图像配准(image registration)来确定图像之间的 子像素的位移(位移值乘以2以适配于Resnet的输出) 2. 经过Resnet的结果与子像素移位一起使用中值移位和加法方法组成初始的高分率图像,这时候维度再次增加,为原来的4倍. 3. 初始的高分辨率图像再经过迭代的EvoIM过程得到…
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions. They train an automatic…
Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherently sequential across time. Convolutional networks have shown advantages on machine translation and conditional image generation. Innovation: The author…
我把我明天讲PPT的材料弄上来了........哈 哈哈…
论文将搜索空间从整体网络转化为卷积单元(cell),再按照设定堆叠成新的网络家族NASNet.不仅降低了搜索的复杂度,从原来的28天缩小到4天,而且搜索出来的结构具有扩展性,在小模型和大模型场景下都能使用更少的参数量和计算量来超越人类设计的模型,达到SOTA   来源:[晓飞的算法工程笔记] 公众号 论文: Learning Transferable Architectures for Scalable Image Recognition 论文地址:https://arxiv.org/abs/1…
CondenseNet特点在于可学习分组卷积的提出,结合训练过程进行剪枝,不仅能准确地剪枝,还能继续训练,使网络权重更平滑,是个很不错的工作   来源:晓飞的算法工程笔记 公众号 论文:Neural Architecture Search with Reinforcement Learning 论文地址:https://arxiv.org/abs/1711.09224 论文代码:https://github.com/ShichenLiu/CondenseNet Introduction   De…
2018  AI产业界大盘点 大事件盘点 “ 1.24——Facebook人工智能部门负责人Yann LeCun宣布卸任 Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸任,之后将担任Facebook首席人工智能科学家,保留对FAIR的研究方向的控制.同时,原工作将由新任负责人Jérôme Pesenti  接替,Facebook应用机器学习小组(AML)和Yann  LeCun将同时向其汇报.而Jérôme Pesenti  将直接向Facebook  CTO汇报…
前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图像为例,我们人为的加一些东西,然后会急剧的降低网络的分类正确率.比如下图: 在生成对抗样本之后,分类器把alps 以高置信度把它识别成了狗,下面的一幅图,是把puffer 加上一些我们人类可能自己忽视的东西,但是对分类器来说,这个东西可能很重要,这样分类器就会去调节它,这就导致分类器以百分之百的置信…
背景 CVPR 2019 是机器视觉方向最重要的学术会议,本届大会共吸引了来自全世界各地共计 5160 篇论文,共接收 1294 篇论文,投稿数量和接受数量都创下了历史新高,其中与自动驾驶相关的论文.项目和展商也是扎堆亮相,成为本次会议的“新宠”. 障碍物轨迹预测挑战赛(Trajectory Prediction Challenge)隶属于CVPR 2019 Workshop on Autonomous Driving — Beyond Single Frame Perception(自动驾驶研…
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awesome-object-detection This is a list of awesome articles about object detection. R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SPP-Net Y…
Dual Attention Network for Scene Segmentation 在本文中,我们通过 基于自我约束机制捕获丰富的上下文依赖关系来解决场景分割任务.       与之前通过多尺度特征融合捕获上下文的工作不同,我们提出了一种双重注意网络(DANet)来自适应地集成局部特征及其全局依赖性. 具体来说,我们在传统的扩张FCN之上附加两种类型的注意力模块,它们分别对空间和通道维度中的语义相互依赖性进行建模. 位置力关注模块通过所有位置处的特征的加权和来选择性地聚合每个位置处的特征…
my paper~~ 1.(DAP,IAP)Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer 2.(ALE)Label-Embedding for Attribute-Based Classification 3.(SAE)Semantic Autoencoder for Zero-shot Learning       CVPR2017 https://github.com/waitwait…
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py 目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载 详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr20…
CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/ 强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378 https://www.zhihu.com/question/41775291 CNN在l…
Synthesizing Images of Humans in Unseen Poses balakg/posewarp-cvpr2018 https://github.com/balakg/posewarp-cvpr2018 pose warping Code for our CVPR 2018 paper: "Synthesizing Images of Humans in Unseen Poses" Link to paper:http://openaccess.thecvf.…
Table of contents Introduction Survey papers Benchmark datasets Fine-grained image recognition Fine-grained recognition by localization-classification subnetworks Fine-grained recognition by end-to-end feature encoding Fine-grained recognition with e…
AI 科技评论编者按:现在,越来越多的企业.高校以及学术组织机构通过举办各种类型的数据竞赛来「物色」数据科学领域的优秀人才,并借此激励他们为某一数据领域或应用场景找到具有突破性意义的方案,也为之后的数据研究者留下有价值的经验. Smilexuhc 在 GitHub 社区对各大数据竞赛名列前茅的解决方案进行了整理,包括纯数据竞赛.自然语言处理(NLP)领域数据赛事的 Top 解决方案.对这些赛事感兴趣的小伙伴可以一起来看一下这篇干货满满的汇总贴: 纯数据竞赛 1.2018 科大讯飞 AI 营销算法…
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detection> 在VOC2007测试集上,图像输入512*512时,map为81.8%,速度为24fps. 论文链接:https://arxiv.org/abs/1711.06897 二.主要思想 1.单阶段框架用于目标检测,由两个相互连接模块组成:ARM和ODM: 2.设计了TCB来传输ARM特征,来处理更具挑…
BigCowPeking的CSDN博客 https://blog.csdn.net/wfei101/article/category/7120809 Low Rank Structure of Learned Representations 解读:牛津大学神经网络新训练法:低秩结构增强网络压缩和对抗稳健性 http://3g.163.com/dy/article/DGVMMFO40511FERQ.html ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GE…
遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision.ucmerced.edu/datasets/landuse.html2. WHU-RS19 Data Set 图像像素大小为600*600,总包含19类场景图像,每一类大概50张,共1005张. https://download.csdn.net/download/u010656161/10153…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方案的深度工具.对于深度编码方案,像素概率建模和自动编码器是两种方法,分别可以看作是预测编码方案和变换编码方案.对于深度工具,有几种使用深度学习来执行帧内预测.帧间预测.跨通道预测.概率分布预测.变换.后处理.环内滤波器.上/下采样以及编码优化的建议技术.为了倡导基于深度学习的视频编码研究,本文对我们…
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结 笔记不能简单的抄写文中的内容,得有自己的思考和理解. 一.基本信息 **\1.标题:**Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering **\2.作者:**Peter Anderson,Xiaodong…
人群计数的方法分为传统的视频和图像人群计数算法以及基于深度学习的人群计数算法,深度学习方法由于能够方便高效地提取高层特征而获得优越的性能是传统方法无法比拟的.本文简单了秒速了近几年,基于单张图像利用CNN估计人群密度图和计数的方法. 传统的人群计数方法 传统的人群计数方法可以分为两类,基于检测的方法和基于回归的方法. 基于检测的方法 早期的计数方法主要是基于检测的方法,使用一个滑动窗口来检测场景中的人群,并统计人数. 基于检测的方法可以分为两类: 基于整体的检测,训练一个分类器,利用从行人全身提…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方Github项目地址,再点击对应链接跳转下载. 01Github项目地址: https://github.com/nnzhan/Awesome-Graph-Neural-Networks 02调查报告 A Comprehensive Survey on Graph Neural Networks. …
目录 相关背景 主要内容 MSMT17 Person Transfer GAN(PTGAN) 总结 注:原创不易,转载请务必注明原作者和出处,感谢支持! 相关背景 行人再识别(Person Re-identification, Person ReID)是指给定一个行人的图片/视频(probe),然后从一个监控网络所拍摄的图片/视频(gallery)库中识别出该行人的这个一个过程.其可以看做是一个基于内容的图像检索(CBIR)的一个子问题. 论文题目:Person Transfer GAN to…