5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3.  \eee$$ 2.  (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\ C_0>0,\st \int_\Omega…
5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{{\bf u}={\bf y}-{\bf x}}\\ &=\rh…
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间断性.…
1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\gamma,\quad e=e^\frac{S-S_0}{c_V}\rho^{\gamma-1}\ra p=(\gamma-1)\rho e =(\gamma-1)\rho (E-Zg_0). \eex$$ 3.  对理想气体的多…
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&+\cfrac{1}{\rho}\n p =\cfrac{1}{\rho}\Div(2\mu{\bf S}) +\cfrac{1}{\rho}\n \sez{\sex{\mu'-\cfr…
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2.  物理化学 (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能. (2)  流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\b…
1.  在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2.  在流体存在粘性.热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 3.  如果流体没有任何耗散过程, 此时称为理想磁流体, 而其方程称为理想磁流体力学方程组, 它是一个具有守恒律形式的一阶拟线性对称双曲组.…
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf…
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\b…
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$ 2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd t}…
1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$…
1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t\\ &\ra \exists\ m,\st \rd m=-\rho u\rd t+\rho \rd x. \eea \eeex$$ 取 $$\beex \bea t'&=t,\\ m&=\…
一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sez{\sex{\cfrac{4\mu}{3}+\mu'}\cfrac{\p u}{\p x}}&=F,\\…
1.  粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u},\\ \cfrac{\p{\bf u}}{\p t}&-\cfrac{\mu}{\rho}\lap {\bf u} -\cfrac{\mu'+\cfrac{1}{3}\mu}{\rho}\n\Div{\bf u} =\cfrac{1}{\rho} \sez{ \rho {\bf F}-c^2\n\rh…
粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u}}{\rd t} +\n p -\n\sez{ \sex{\mu'-\cfrac{2}{3}\mu}\Div{\bf u} } -2\Div(\mu {\bf S})&=\rho {\bf F},\\ \rho\cfrac{\rd e}{\rd t} +p\Div{\bf u} -\mu\sum_{…
1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力. 2.  由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\sex{\c…
1.  在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2.  于 $M$ 处以 ${\bf n}$ 为法向的单位面积所受的面力 (${\bf n}$ 所指一侧的流体施加的) 为 $$\bex {\bf p}_n=\lim_{{\bf n}\perp \lap S\to 0}\cfrac{\lap {\bf p}}{\lap S}. \eex$$ 称为应力向量. 3.  记 $p_{ij}$ 为以 $x_j$ 为法…
1.  实际的流体与理想流体的主要区别在于: 前者具有粘性 (内摩擦) 和热传导. 2.  内摩擦 (1)  当两层流体有相对运动时, 方有摩擦力; 它是一种内力; 单位面积上所受的内力称为应力; 而它通常与表面相切, 而称为切应力. (2)  Newton 假设摩擦力与速度梯度成正比; 满足此假设的称为 Newton 流体; 而不满足的称为非 Newton 流体. 3.  热传导 (1)  Fourier 实验定律: $$\bex \rd q=-\kappa\cfrac{\p T}{\p n}…
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rh…
1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$. 2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&…
1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$ 2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_…
1.  理想流体: 指忽略粘性及热传导的流体. 2.  流体的状态 (运动状态及热力学状态) 的描述 (1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度. (2)   质量密度 $\rho$: 单位体积流体的质量. a.  质量流向量 (动量密度向量) $\rho\bbu$; b.  动量流张量 $\rho \bbu\otimes \bbu$; c.  比容 $\tau=\cfrac{1}{\rho}$: 单位质量流体的体积. (3)   压强 $p$: 作…
1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理量 (下一章讨论). 3.  弹性体: 在荷载作用下产生弹性形变, 而撤去荷载后变形立即消失, 无题恢复原来的状态. 4.  本构关系: 物体的变形与应力之间的某种关系. 5.  弹性理论 $$\beex \bea\mbox{弹性理论}\sedd{\ba{ll} \mbox{线性弹性理论}\\ \m…
1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一种是爆炸 (detonation): 火焰以 $\geq 2000\ m/s$ 的速度向前传播, 此时, Chapman (1899) 与 Jouquet (1905) 认为化学反应过程是瞬时发生并完成的, 即有一波前 (wavefront) 进入未燃气体, 并瞬时地将它变成已燃气体. 3.  本章…
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数. 若再 ${\bf T}({\bf y})=\hat{\bf T}({\bf F}({\bf x}))$, 则称弹性体是齐次的,…
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应力 1.  弹性体所受荷载中的外力部分有体积力 ${\bf b}$, 表面力 ${\bf \tau}$. 2.  在荷载的作用下, 弹性体发生变形. $M$ 处 ${\bf\nu}$ 方向的应力向量 $$\bex {\bf \sigma} =\lim_{{\bf\nu}\perp\lap S\to…
1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$$ 3.  ${\bf C}$ 的表示: $$\beex \bea {\bf C}&={\bf F}^T{\bf C}=[{\bf I}+(\n{\bf u})^T]\cdot [{\bf I}+\n {\bf u}]\\ &={\bf I}+\n{\bf u}+(\n{\bf u})^T+(…
1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解. 证明: (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$…
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为变形梯度张量.…