论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状更接近于目标物体的形状,但有时会超出ROI区域,从而引入不相关的图像信息进而对提取的特征造成影响.为此,本文提出了改造后的可变形卷积,通过增加建模及更强的训练来改善其聚焦图像相关区域的能力.通过在网路中引入更多的可变形卷积,同时,引入调制机制来扩大可变形的范围.为了有效的利用丰富的建模能力,通过一个…